Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36289700

RESUMEN

Medical records generated in hospitals are treasures for academic research and future references. Medical Image Retrieval (MIR) Systems contribute significantly to locating the relevant records required for a particular diagnosis, analysis, and treatment. An efficient classifier and effective indexing technique are required for the storage and retrieval of medical images. In this paper, a retrieval framework is formulated by adopting a modified Local Binary Pattern feature (AvN-LBP) for indexing and an optimized Fuzzy Art Map (FAM) for classifying and searching medical images. The proposed indexing method extracts LBP considering information from neighborhood pixels and is robust to background noise. The FAM network is optimized using the Differential Evaluation (DE) algorithm (DEFAMNet) with a modified mutation operation to minimize the size of the network without compromising the classification accuracy. The performance of the proposed DEFAMNet is compared with that of other classifiers and descriptors; the classification accuracy of the proposed AvN-LBP operator with DEFAMNet is higher. The experimental results on three benchmark medical image datasets provide evidence that the proposed framework classifies the medical images faster and more efficiently with lesser computational cost.

2.
Front Public Health ; 10: 905265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602165

RESUMEN

Blockchain is a recent revolutionary technology primarily associated with cryptocurrencies. It has many unique features including its acting as a decentralized, immutable, shared, and distributed ledger. Blockchain can store all types of data with better security. It avoids third-party intervention to ensure better security of the data. Deep learning is another booming field that is mostly used in computer applications. This work proposes an integrated environment of a blockchain-deep learning environment for analyzing the Electronic Health Records (EHR). The EHR is the medical documentation of a patient which can be shared among hospitals and other public health organizations. The proposed work enables a deep learning algorithm act as an agent to analyze the EHR data which is stored in the blockchain. This proposed integrated environment can alert the patients by means of a reminder for consultation, diet chart, etc. This work utilizes the deep learning approach to analyze the EHR, after which an alert will be sent to the patient's registered mobile number.


Asunto(s)
Cadena de Bloques , Aprendizaje Profundo , Algoritmos , Atención a la Salud , Registros Electrónicos de Salud , Humanos
3.
Front Public Health ; 10: 853294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309200

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia in older adults. There is currently a lot of interest in applying machine learning to find out metabolic diseases like Alzheimer's and Diabetes that affect a large population of people around the world. Their incidence rates are increasing at an alarming rate every year. In Alzheimer's disease, the brain is affected by neurodegenerative changes. As our aging population increases, more and more individuals, their families, and healthcare will experience diseases that affect memory and functioning. These effects will be profound on the social, financial, and economic fronts. In its early stages, Alzheimer's disease is hard to predict. A treatment given at an early stage of AD is more effective, and it causes fewer minor damage than a treatment done at a later stage. Several techniques such as Decision Tree, Random Forest, Support Vector Machine, Gradient Boosting, and Voting classifiers have been employed to identify the best parameters for Alzheimer's disease prediction. Predictions of Alzheimer's disease are based on Open Access Series of Imaging Studies (OASIS) data, and performance is measured with parameters like Precision, Recall, Accuracy, and F1-score for ML models. The proposed classification scheme can be used by clinicians to make diagnoses of these diseases. It is highly beneficial to lower annual mortality rates of Alzheimer's disease in early diagnosis with these ML algorithms. The proposed work shows better results with the best validation average accuracy of 83% on the test data of AD. This test accuracy score is significantly higher in comparison with existing works.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico , Encéfalo , Disfunción Cognitiva/diagnóstico , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA