Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Life (Basel) ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792600

RESUMEN

Our research has developed a highly sensitive and simple assay to detect small amounts of animal and human biological material in less than 40 min. The handheld SaLux19 device developed at the Max Planck Institute of Experimental Medicine in Göttingen, Germany, was used to validate our concept. The proposed system uses isothermal amplification of DNA in a rapid assay format. Our results show that the assay can detect Sus scrofa nucleic acids with very high sensitivity and specificity. This detection system has potential for forensic scenarios.

2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903668

RESUMEN

Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input's statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons' sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.


Asunto(s)
Ritmo Gamma/fisiología , Interneuronas/fisiología , Corteza Prefrontal/citología , Ritmo Teta/fisiología , Animales , Femenino , Masculino , Ratones , Red Nerviosa/fisiología , Técnicas de Placa-Clamp
3.
J Gen Physiol ; 149(5): 577-593, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360219

RESUMEN

Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4-S5 linker). However, our recent work on channels disrupted in the S4-S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4-S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use "split" channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4-S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4-S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico , Sustitución de Aminoácidos , Animales , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Potenciales de la Membrana , Dominios Proteicos , Xenopus
4.
Mol Neurobiol ; 54(2): 1078-1091, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26803493

RESUMEN

The dysfunction of the small-conductance calcium-activated K+ channel SK3 has been described as one of the factors responsible for the progress of psychoneurological diseases, but the molecular basis of this is largely unknown. This report reveals through use of immunohistochemistry and computational tomography that long-term increased expression of the SK3 small-conductance calcium-activated potassium channel (SK3-T/T) in mice induces a notable bilateral reduction of the hippocampal area (more than 50 %). Histological analysis showed that SK3-T/T mice have cellular disarrangements and neuron discontinuities in the hippocampal formation CA1 and CA3 neuronal layer. SK3 overexpression resulted in cognitive loss as determined by the object recognition test. Electrophysiological examination of hippocampal slices revealed that SK3 channel overexpression induced deficiency of long-term potentiation in hippocampal microcircuits. In association with these results, there were changes at the mRNA levels of some genes involved in Alzheimer's disease and/or linked to schizophrenia, epilepsy, and autism. Taken together, these features suggest that augmenting the function of SK3 ion channel in mice may present a unique opportunity to investigate the neural basis of central nervous system dysfunctions associated with schizophrenia, Alzheimer's disease, or other neuropsychiatric/neurodegenerative disorders in this model system. As a more detailed understanding of the role of the SK3 channel in brain disorders is limited by the lack of specific SK3 antagonists and agonists, the results observed in this study are of significant interest; they suggest a new approach for the development of neuroprotective strategies in neuropsychiatric/neurodegenerative diseases with SK3 representing a potential drug target.


Asunto(s)
Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Hipocampo/metabolismo , Hipocampo/patología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/biosíntesis , Animales , Atrofia , Disfunción Cognitiva/genética , Expresión Génica , Ratones , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
5.
J Cell Physiol ; 232(8): 2019-2032, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27255432

RESUMEN

Several reports credit mibefradil with tumor suppressing properties arising from its known inhibition of Ca2+ currents. Given that mibefradil (Mb) is also known to inhibit K+ channels, we decided to study the interaction between this organic compound and the tumor-related Kv10.1 channel. Here we report that Mb modulates the gating of Kv10.1. Mb induces an apparent inactivation from both open and early closed states where the channels dwell at hyperpolarized potentials. Additionally, Mb accelerates the kinetics of current activation, in a manner that depends on initial conditions. Our observations suggest that Mb binds to the voltage sensor domain of Kv10.1 channels, thereby modifying the gating of the channels in a way that in some, but not all, aspects opposes to the gating effects exerted by divalent cations. J. Cell. Physiol. 232: 2019-2032, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Activación del Canal Iónico/efectos de los fármacos , Mibefradil/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Sitios de Unión , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Cinética , Potenciales de la Membrana , Mibefradil/metabolismo , Modelos Biológicos , Bloqueadores de los Canales de Potasio/metabolismo , Unión Proteica , Transfección
6.
Eur Biophys J ; 45(7): 721-733, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27444284

RESUMEN

The Kv10.1 (Eag1) voltage-gated potassium channel represents a promising molecular target for novel cancer therapies or diagnostic purposes. Physiologically, it is only expressed in the brain, but it was found overexpressed in more than 70 % of tumours of diverse origin. Furthermore, as a plasma membrane protein, it is easily accessible to extracellular interventions. In this study we analysed the feasibility of the anti-Kv10.1 monoclonal antibody mAb62 to target tumour cells in vitro and in vivo and to deliver therapeutics to the tumour. Using time-domain near infrared fluorescence (NIRF) imaging in a subcutaneous MDA-MB-435S tumour model in nude mice, we showed that mAb62-Cy5.5 specifically accumulates at the tumour for at least 1 week in vivo with a maximum intensity at 48 h. Blocking experiments with an excess of unlabelled mAb62 and application of the free Cy5.5 fluorophore demonstrate specific binding to the tumour. Ex vivo NIRF imaging of whole tumours as well as NIRF imaging and microscopy of tumour slices confirmed the accumulation of the mAb62-Cy5.5 in tumours but not in brain tissue. Moreover, mAb62 was conjugated to the prodrug-activating enzyme ß-D-galactosidase (ß-gal; mAb62-ß-gal). The ß-gal activity of the mAb62-ß-gal conjugate was analysed in vitro on Kv10.1-expressing MDA-MB-435S cells in comparison to control AsPC-1 cells. We show that the mAb62-ß-gal conjugate possesses high ß-gal activity when bound to Kv10.1-expressing MDA-MB-435S cells. Moreover, using the ß-gal activatable NIRF probe DDAOG, we detected mAb62-ß-gal activity in vivo over the tumour area. In summary, we could show that the anti-Kv10.1 antibody is a promising tool for the development of novel concepts of targeted cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Transformación Celular Neoplásica , Canales de Potasio Éter-A-Go-Go/inmunología , Imagen Óptica/métodos , Animales , Carbocianinas/metabolismo , Línea Celular Tumoral , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones
7.
PLoS One ; 11(3): e0151862, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26986975

RESUMEN

The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Receptores Purinérgicos P2X7/fisiología , Western Blotting , Calcio/metabolismo , Calcio/fisiología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Inmunoprecipitación , Técnicas de Placa-Clamp , Polimorfismo de Nucleótido Simple/fisiología , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/fisiología
8.
Neurotox Res ; 29(3): 364-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26403659

RESUMEN

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1(+/+), CX3CR1(+/GFP) and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1(+/GFP) mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Receptores de Quimiocina/metabolismo , Sustancia Negra/efectos de los fármacos , Administración Intranasal , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Receptor 1 de Quimiocinas CX3C , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Gliosis/inducido químicamente , Gliosis/metabolismo , Inyecciones Intraperitoneales , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Receptores de Quimiocina/genética , Sustancia Negra/metabolismo , Sustancia Negra/patología
9.
J Neurosci Methods ; 257: 194-203, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432934

RESUMEN

BACKGROUND: Multi-electrode arrays (MEAs) allow non-invasive multi-unit recording in-vitro from cultured neuronal networks. For sufficient neuronal growth and adhesion on such MEAs, substrate preparation is required. Plating of dissociated neurons on a uniformly prepared MEA's surface results in the formation of spatially extended random networks with substantial inter-sample variability. Such cultures are not optimally suited to study the relationship between defined structure and dynamics in neuronal networks. To overcome these shortcomings, neurons can be cultured with pre-defined topology by spatially structured surface modification. Spatially structuring a MEA surface accurately and reproducibly with the equipment of a typical cell-culture laboratory is challenging. NEW METHOD: In this paper, we present a novel approach utilizing micro-contact printing (µCP) combined with a custom-made device to accurately position patterns on MEAs with high precision. We call this technique AP-µCP (accurate positioning micro-contact printing). COMPARISON WITH EXISTING METHODS: Other approaches presented in the literature using µCP for patterning either relied on facilities or techniques not readily available in a standard cell culture laboratory, or they did not specify means of precise pattern positioning. CONCLUSION: Here we present a relatively simple device for reproducible and precise patterning in a standard cell-culture laboratory setting. The patterned neuronal islands on MEAs provide a basis for high throughput electrophysiology to study the dynamics of single neurons and neuronal networks.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Microelectrodos , Microtecnología/instrumentación , Neuronas/fisiología , Impresión/instrumentación , Potenciales de Acción , Animales , Astrocitos/fisiología , Adhesión Celular , Recuento de Células , Técnicas de Cultivo de Célula/métodos , Diseño de Equipo , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Microscopía de Contraste de Fase , Microtecnología/métodos , Neuronas/citología , Impresión/métodos , Ratas , Reproducibilidad de los Resultados , Propiedades de Superficie
10.
PLoS One ; 10(12): e0145767, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26713617

RESUMEN

Using an endoscopic approach, small intraoral bone chambers, which are routinely obtained during tooth extraction and implantation, provide visual in vivo access to internal bone structures. The aim of the present paper is to present a new method to quantify bone microstructure and vascularisation in vivo. Ten extraction sockets and 6 implant sites in 14 patients (6 men / 8 women) were examined by support immersion endoscopy (SIE). After tooth extraction or implant site preparation, microscopic bone analysis (MBA) was performed using short distance SIE video sequences of representative bone areas for off-line analysis with ImageJ. Quantitative assessment of the microstructure and vascularisation of the bone in dental extraction and implant sites in vivo was performed using ImageJ. MBA revealed bone morphology details such as unmineralised and mineralised areas, vascular canals and the presence of bleeding through vascular canals. Morphometric examination revealed that there was more unmineralised bone and less vascular canal area in the implant sites than in the extraction sockets.


Asunto(s)
Endoscopía/métodos , Imagen Molecular/métodos , Extracción Dental , Alveolo Dental/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Implantes Dentales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neovascularización Fisiológica , Alveolo Dental/irrigación sanguínea
11.
BMC Cancer ; 15: 839, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26530050

RESUMEN

BACKGROUND: Kv10.1, a voltage-gated potassium channel only detected in the healthy brain, was found to be aberrantly expressed in extracerebral cancers. Investigations of Kv10.1 in brain metastasis and glioblastoma multiforme (GBM) are lacking. METHODS: We analyzed the expression of Kv10.1 by immunohistochemistry in these brain tumors (75 metastasis from different primary tumors, 71 GBM patients) and the influence of a therapy with tricyclic antidepressants (which are Kv10.1 blockers) on survival. We also investigated Kv10.1 expression in the corresponding primary carcinomas of metastases patients. RESULTS: We observed positive Kv10.1 expression in 85.3 % of the brain metastases and in 77.5 % of GBMs. Patients with brain metastases, showing low Kv10.1 expression, had a significantly longer overall survival compared to those patients with high Kv10.1 expression. Metastases patients displaying low Kv10.1 expression and also receiving tricyclic antidepressants showed a significantly longer median overall survival as compared to untreated patients. CONCLUSIONS: Our data show that Kv10.1 is not only highly expressed in malignant tumors outside CNS, but also in the most frequent cerebral cancer entities, metastasis and GBM, which remain incurable in spite of aggressive multimodal therapies. Our results extend the correlation between dismal prognosis and Kv10.1 expression to patients with brain metastases or GBMs and, moreover, they strongly suggest a role of tricyclic antidepressants for personalized therapy of brain malignancies.


Asunto(s)
Neoplasias Encefálicas/genética , Canales de Potasio Éter-A-Go-Go/biosíntesis , Glioblastoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Supervivencia sin Enfermedad , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
12.
Circ Res ; 117(5): 401-12, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26078285

RESUMEN

RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level. OBJECTIVE: To test the hypothesis that cardiac myocyte-targeted voltage-sensitive fluorescence protein 2.3 (VSFP2.3) can be exploited as optogenetic tool for the monitoring of electric activity in isolated cardiac myocytes and the whole heart as well as function and maturity in induced pluripotent stem cell-derived cardiac myocytes. METHODS AND RESULTS: We first generated mice with cardiac myocyte-restricted expression of VSFP2.3 and demonstrated distinct localization of VSFP2.3 at the t-tubulus/junctional sarcoplasmic reticulum microdomain without any signs for associated pathologies (assessed by echocardiography, RNA-sequencing, and patch clamping). Optically recorded VSFP2.3 signals correlated well with membrane voltage measured simultaneously by patch clamping. The use of VSFP2.3 for human action potential recordings was confirmed by simulation of immature and mature action potentials in murine VSFP2.3 cardiac myocytes. Optical cardiograms could be monitored in whole hearts ex vivo and minimally invasively in vivo via fiber optics at physiological heart rate (10 Hz) and under pacing-induced arrhythmia. Finally, we reprogrammed tail-tip fibroblasts from transgenic mice and used the VSFP2.3 sensor for benchmarking functional and structural maturation in induced pluripotent stem cell-derived cardiac myocytes. CONCLUSIONS: We introduce a novel transgenic voltage-sensor model as a new method in cardiovascular research and provide proof of concept for its use in optogenetic sensing of physiological and pathological excitation in mature and immature cardiac myocytes in vitro and in vivo.


Asunto(s)
Potenciales de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Optogenética/métodos , Animales , Humanos , Ratones , Ratones Transgénicos , Imagen de Colorante Sensible al Voltaje/métodos
13.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009771

RESUMEN

Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å(3) for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes.


Asunto(s)
Células Cromafines/fisiología , Exocitosis/fisiología , Presión Hidrostática , Activación del Canal Iónico/fisiología , Transmisión Sináptica/fisiología , Vesículas Transportadoras/fisiología , Capacidad Eléctrica , Humanos , Cinética , Técnicas de Placa-Clamp , Receptores Colinérgicos/metabolismo
14.
Nat Commun ; 6: 6672, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25818916

RESUMEN

Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio con Entrada de Voltaje/química , Animales , Canales de Potasio Éter-A-Go-Go/metabolismo , Immunoblotting , Inmunoprecipitación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Estructura Terciaria de Proteína , Xenopus laevis
15.
J Physiol ; 593(1): 181-96, 2015 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-25556795

RESUMEN

KEY POINTS: Voltage-gated KV 10.1 potassium channels are widely expressed in the mammalian brain but their function remains poorly understood. We report that KV 10.1 is enriched in the presynaptic terminals and does not take part in somatic action potentials. In parallel fibre synapses in the cerebellar cortex, we find that KV 10.1 regulates Ca(2+) influx and neurotransmitter release during repetitive high-frequency activity. Our results describe the physiological role of mammalian KV 10.1 for the first time and help understand the fine-tuning of synaptic transmission. The voltage-gated potassium channel KV 10.1 (Eag1) is widely expressed in the mammalian brain, but its physiological function is not yet understood. Previous studies revealed highest expression levels in hippocampus and cerebellum and suggested a synaptic localization of the channel. The distinct activation kinetics of KV 10.1 indicate a role during repetitive activity of the cell. Here, we confirm the synaptic localization of KV 10.1 both biochemically and functionally and that the channel is sufficiently fast at physiological temperature to take part in repolarization of the action potential (AP). We studied the role of the channel in cerebellar physiology using patch clamp and two-photon Ca(2+) imaging in KV 10.1-deficient and wild-type mice. The excitability and action potential waveform recorded at granule cell somata was unchanged, while Ca(2+) influx into axonal boutons was enhanced in mutants in response to stimulation with three APs, but not after a single AP. Furthermore, mutants exhibited a frequency-dependent increase in facilitation at the parallel fibre-Purkinje cell synapse at high firing rates. We propose that KV 10.1 acts as a modulator of local AP shape specifically during high-frequency burst firing when other potassium channels suffer cumulative inactivation.


Asunto(s)
Calcio/fisiología , Cerebelo/fisiología , Canales de Potasio Éter-A-Go-Go/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Células de Purkinje/fisiología , Potenciales de Acción , Animales , Cerebelo/citología , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Ratones Noqueados , Ratas Sprague-Dawley , Sinapsis/fisiología
16.
Philos Trans R Soc Lond B Biol Sci ; 369(1638): 20130094, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24493742

RESUMEN

Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression.


Asunto(s)
Ciclo Celular/fisiología , Proliferación Celular , Modelos Biológicos , Neoplasias/fisiopatología , Canales de Potasio/fisiología , Puntos de Control del Ciclo Celular/fisiología , Humanos , Potenciales de la Membrana/fisiología , Canales de Potasio/metabolismo
17.
Biochim Biophys Acta ; 1838(3): 921-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24269539

RESUMEN

KV10.1 potassium channels are implicated in a variety of cellular processes including cell proliferation and tumour progression. Their expression in over 70% of human tumours makes them an attractive diagnostic and therapeutic target. Although their physiological role in the central nervous system is not yet fully understood, advances in their precise cell localization will contribute to the understanding of their interactions and function. We have determined the plasma membrane (PM) distribution of the KV10.1 protein in an enriched mouse brain PM fraction and its association with cholesterol- and sphingolipid-rich domains. We show that the KV10.1 channel has two different populations in a 3:2 ratio, one associated to and another excluded from Detergent Resistant Membranes (DRMs). This distribution of KV10.1 in isolated PM is cholesterol- and cytoskeleton-dependent since alteration of those factors changes the relationship to 1:4. In transfected HEK-293 cells with a mutant unable to bind Ca(2+)/CaM to KV10.1 protein, Kv10.1 distribution in DRM/non-DRM is 1:4. Mean current density was doubled in the cholesterol-depleted cells, without any noticeable effects on other parameters. These results demonstrate that recruitment of the KV10.1 channel to the DRM fractions involves its functional regulation.


Asunto(s)
Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Microdominios de Membrana/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Western Blotting , Membrana Celular/química , Colesterol/metabolismo , Citoesqueleto/metabolismo , Detergentes/metabolismo , Electrofisiología , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Células HEK293 , Humanos , Microdominios de Membrana/química , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Nat Rev Cancer ; 14(1): 39-48, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24336491

RESUMEN

Potassium channels are transmembrane proteins that selectively facilitate the flow of potassium ions down an electrochemical gradient. These molecules have been studied in great detail in the context of cell excitability, but their roles in less cell type-specific functions, such as cell proliferation, angiogenesis or cell migration, have only recently been assessed. Moreover, the importance of these channels for tumour biology has become evident. This, coupled with the fact that they are accessible proteins and that their pharmacology is well characterized, has increased the interest in investigating potassium channels as therapeutic targets in cancer patients.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/fisiología , Neoplasias/metabolismo , Animales , Apoptosis , Adhesión Celular , Movimiento Celular , Proliferación Celular , Tamaño de la Célula , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/metabolismo
19.
Front Neural Circuits ; 7: 167, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155695

RESUMEN

Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson's disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics, and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light-driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Modelos Neurológicos , Optogenética , Ratas , Ratas Wistar
20.
Glia ; 61(7): 1084-100, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23595698

RESUMEN

Neuron-glia interactions play a key role in maintaining and regulating the central nervous system. Glial cells are implicated in the function of dopamine neurons and regulate their survival and resistance to injury. Parkinson's disease is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, decreased striatal dopamine levels and consequent onset of extrapyramidal motor dysfunction. Parkinson's disease is a common chronic, neurodegenerative disorder with no effective protective treatment. In the 6-OHDA mouse model of Parkinson's disease, doxycycline administered at a dose that both induces/represses conditional transgene expression in the tetracycline system, mitigates the loss of dopaminergic neurons in the substantia nigra compacta and nerve terminals in the striatum. This protective effect was associated with: (1) a reduction of microglia in normal mice as a result of doxycycline administration per se; (2) a decrease in the astrocyte and microglia response to the neurotoxin 6-OHDA in the globus pallidus and substantia nigra compacta, and (3) the astrocyte reaction in the striatum. Our results suggest that doxycycline blocks 6-OHDA neurotoxicity in vivo by inhibiting microglial and astrocyte expression. This action of doxycycline in nigrostriatal dopaminergic neuron protection is consistent with a role of glial cells in Parkinson's disease neurodegeneration. The neuroprotective effect of doxycycline may be useful in preventing or slowing the progression of Parkinson's disease and other neurodegenerative diseases linked to glia function.


Asunto(s)
Doxiciclina/uso terapéutico , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Adrenérgicos/toxicidad , Análisis de Varianza , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Antígeno de Macrófago-1/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...