Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Stem Cell Reports ; 5(5): 702-715, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26527384

RESUMEN

Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage⁻ SCA-1⁺ KIT⁺ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34⁻ CD48⁻ CD150⁺ LSK (CD34⁻ SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34⁻ SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27(Kip1) expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity.


Asunto(s)
Ciclo Celular , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Células Madre Hematopoyéticas/citología , Células del Estroma/metabolismo , Animales , Línea Celular , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Nicho de Células Madre
2.
BMC Genomics ; 13: 490, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22988944

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) have provided a large set of genetic loci influencing the risk for many common diseases. Association studies typically analyze one specific trait in single populations in an isolated fashion without taking into account the potential phenotypic and genetic correlation between traits. However, GWA data can be efficiently used to identify overlapping loci with analogous or contrasting effects on different diseases. RESULTS: Here, we describe a new approach to systematically prioritize and interpret available GWA data. We focus on the analysis of joint and disjoint genetic determinants across diseases. Using network analysis, we show that variant-based approaches are superior to locus-based analyses. In addition, we provide a prioritization of disease loci based on network properties and discuss the roles of hub loci across several diseases. We demonstrate that, in general, agonistic associations appear to reflect current disease classifications, and present the potential use of effect sizes in refining and revising these agonistic signals. We further identify potential branching points in disease etiologies based on antagonistic variants and describe plausible small-scale models of the underlying molecular switches. CONCLUSIONS: The observation that a surprisingly high fraction (>15%) of the SNPs considered in our study are associated both agonistically and antagonistically with related as well as unrelated disorders indicates that the molecular mechanisms influencing causes and progress of human diseases are in part interrelated. Genetic overlaps between two diseases also suggest the importance of the affected entities in the specific pathogenic pathways and should be investigated further.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Análisis por Conglomerados , Sitios Genéticos , Genoma Humano , Humanos , Oportunidad Relativa
3.
PLoS One ; 7(5): e36694, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606281

RESUMEN

Genome-wide association studies (GWAS) have become an effective tool to map genes and regions contributing to multifactorial human diseases and traits. A comparably small number of variants identified by GWAS are known to have a direct effect on protein structure whereas the majority of variants is thought to exert their moderate influences on the phenotype through regulatory changes in mRNA expression. MicroRNAs (miRNAs) have been identified as powerful posttranscriptional regulators of mRNAs. Binding to their target sites, which are mostly located within the 3'-untranslated region (3'-UTR) of mRNA transcripts, they modulate mRNA expression and stability. Until today almost all human mRNA transcripts are known to harbor at least one miRNA target site with an average of over 20 miRNA target sites per transcript. Among 5,101 GWAS-identified sentinel single nucleotide polymorphisms (SNPs) that correspond to 18,884 SNPs in linkage disequilibrium (LD) with the sentinels (r2 ≥ 0.8) we identified a significant overrepresentation of SNPs that affect the 3'-UTR of genes (OR = 2.33, 95% CI = 2.12-2.57, P < 10(-52)). This effect was even stronger considering all SNPs in one LD bin a single signal (OR = 4.27, 95% CI = 3.84-4.74, P < 10(-114)). Based on crosslinking immunoprecipitation data we identified four mechanisms affecting miRNA regulation by 3'-UTR mutations: (i) deletion or (ii) creation of miRNA recognition elements within validated RNA-induced silencing complex binding sites, (iii) alteration of 3'-UTR splicing leading to a loss of binding sites, and (iv) change of binding affinity due to modifications of 3'-UTR folding. We annotated 53 SNPs of a total of 288 trait-associated 3'-UTR SNPs as mediating at least one of these mechanisms. Using a qualitative systems biology approach, we demonstrate how our findings can be used to support biological interpretation of GWAS results as well as to provide new experimentally testable hypotheses.


Asunto(s)
MicroARNs/genética , Polimorfismo Genético , Regiones no Traducidas 3' , Proteínas Cromosómicas no Histona/genética , Prueba de Complementación Genética , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Metabolismo de los Lípidos/genética , Cirrosis Hepática Biliar/genética , Modelos Genéticos , Mutación , Polimorfismo de Nucleótido Simple , Empalme del ARN , Estabilidad del ARN , Biología de Sistemas
4.
Nat Methods ; 9(4): 345-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22453911

RESUMEN

The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Publicaciones Periódicas como Asunto , Unión Proteica , Proteínas/química , Control de Calidad
5.
Bioinformatics ; 27(10): 1346-50, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21441577

RESUMEN

MOTIVATION: Pairing between the target sequence and the 6-8 nt long seed sequence of the miRNA presents the most important feature for miRNA target site prediction. Novel high-throughput technologies such as Argonaute HITS-CLIP afford meanwhile a detailed study of miRNA:mRNA duplices. These interaction maps enable a first discrimination between functional and non-functional target sites in a bulky fashion. Prediction algorithms apply different seed paradigms to identify miRNA target sites. Therefore, a quantitative assessment of miRNA target site prediction is of major interest. RESULTS: We identified a set of canonical seed types based on a transcriptome wide analysis of experimentally verified functional target sites. We confirmed the specificity of long seeds but we found that the majority of functional target sites are formed by less specific seeds of only 6 nt indicating a crucial role of this type. A substantial fraction of genuine target sites arenon-conserved. Moreover, the majority of functional sites remain uncovered by common prediction methods.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , MicroARNs/química , MicroARNs/genética , Animales , Secuencia de Bases , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Nucleic Acids Res ; 39(Database issue): D220-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21109531

RESUMEN

The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).


Asunto(s)
Bases de Datos Genéticas , Minería de Datos , Bases de Datos de Proteínas , Genes Relacionados con las Neoplasias , Genoma de Planta , Genómica , Metabolómica , MicroARNs/metabolismo , Fenotipo , Proteómica , Análisis de Secuencia de Proteína , Integración de Sistemas
7.
PLoS One ; 5(11): e13698, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079808

RESUMEN

BACKGROUND: Gene expression as governed by the interplay of the components of regulatory networks is indeed one of the most complex fundamental processes in biological systems. Although several methods have been published to unravel the hierarchical structure of regulatory networks, weaknesses such as the incorrect or inconsistent assignment of elements to their hierarchical levels, the incapability to cope with cyclic dependencies within the networks or the need for a manual curation to retrieve non-overlapping levels remain unsolved. METHODOLOGY/RESULTS: We developed HiNO as a significant improvement of the so-called breadth-first-search (BFS) method. While BFS is capable of determining the overall hierarchical structures from gene regulatory networks, it especially has problems solving feed-forward type of loops leading to conflicts within the level assignments. We resolved these problems by adding a recursive correction approach consisting of two steps. First each vertex is placed on the lowest level that this vertex and its regulating vertices are assigned to (downgrade procedure). Second, vertices are assigned to the next higher level (upgrade procedure) if they have successors with the same level assignment and have themselves no regulators. We evaluated HiNO by comparing it with the BFS method by applying them to the regulatory networks from Saccharomyces cerevisiae and Escherichia coli, respectively. The comparison shows clearly how conflicts in level assignment are resolved in HiNO in order to produce correct hierarchical structures even on the local levels in an automated fashion. CONCLUSIONS: We showed that the resolution of conflicting assignments clearly improves the BFS-method. While we restricted our analysis to gene regulatory networks, our approach is suitable to deal with any directed hierarchical networks structure such as the interaction of microRNAs or the action of non-coding RNAs in general. Furthermore we provide a user-friendly web-interface for HiNO that enables the extraction of the hierarchical structure of any directed regulatory network. AVAILABILITY: HiNO is freely accessible at http://mips.helmholtz-muenchen.de/hino/.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Modelos Genéticos , Análisis por Conglomerados , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Internet , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
BMC Bioinformatics ; 11: 522, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20961418

RESUMEN

BACKGROUND: Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. RESULTS: Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy) clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. CONCLUSIONS: In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning algorithm that allows the decomposition of these objects in a comprehensive fashion. We validated our approach both on artificial and real-world data. It is readily applicable to any further problem.


Asunto(s)
Análisis por Conglomerados , Biología Computacional/métodos , Modelos Biológicos , Algoritmos , Reconocimiento de Normas Patrones Automatizadas/métodos , Factores de Transcripción
9.
PLoS One ; 4(7): e6473, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19649282

RESUMEN

It is known that miRNA target sites are very short and the effect of miRNA-target site interaction alone appears as being unspecific. Recent experiments suggest further context signals involved in miRNA target site recognition and regulation. Here, we present a novel GC-rich RNA motif downstream of experimentally supported miRNA target sites in human mRNAs with no similarity to previously reported functional motifs. We demonstrate that the novel motif can be found in at least one third of all transcripts regulated by miRNAs. Furthermore, we show that motif occurrence and the frequency of miRNA target sites as well as the stability of their duplex structures correlate. The finding, that the novel motif is significantly associated with miRNA target sites, suggests a functional role of the motif in miRNA target site biology. Beyond, the novel motif has the impact to improve prediction of miRNA target sites significantly.


Asunto(s)
Elementos de Facilitación Genéticos , MicroARNs/genética , Regiones no Traducidas 3' , Humanos
10.
PLoS One ; 4(7): e6393, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19636432

RESUMEN

To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA ("Semantic Extraction using a Neural Network Architecture"), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, co-occurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches.


Asunto(s)
Indización y Redacción de Resúmenes , Redes Neurales de la Computación , Algoritmos
11.
Nucleic Acids Res ; 36(Database issue): D651-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17999995

RESUMEN

DIMA-the domain interaction map has evolved from a simple web server for domain phylogenetic profiling into an integrative prediction resource combining both experimental data on domain-domain interactions and predictions from two different algorithms. With this update, DIMA obtains greatly improved coverage at the level of genomes and domains as well as with respect to available prediction approaches. The domain phylogenetic profiling method now uses SIMAP as its backend for exhaustive domain hit coverage: 7038 Pfam domains were profiled over 460 completely sequenced genomes. Domain pair exclusion predictions were produced from 83 969 distinct protein-protein interactions obtained from IntAct resulting in 21 513 domain pairs with significant domain pair exclusion algorithm scores. Additional predictions applying the same algorithm to predicted protein interactions from STRING yielded 2378 high-confidence pairs. Experimental data comes from iPfam (3074) and 3did (3034 pairs), two databases identifying domain contacts in solved protein structures. Taken together, these two resources yielded 3653 distinct interacting domain pairs. DIMA is available at http://mips.gsf.de/genre/proj/dima.


Asunto(s)
Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Internet , Filogenia , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas/clasificación , Interfaz Usuario-Computador
12.
Nucleic Acids Res ; 36(Database issue): D646-50, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17965090

RESUMEN

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes.


Asunto(s)
Bases de Datos de Proteínas , Complejos Multiproteicos/fisiología , Animales , Humanos , Internet , Ratones , Complejos Multiproteicos/análisis , Complejos Multiproteicos/química , Ratas , Interfaz Usuario-Computador
13.
Nucleic Acids Res ; 36(Database issue): D289-92, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18037617

RESUMEN

Protein sequences are the most important source of evolutionary and functional information for new proteins. In order to facilitate the computationally intensive tasks of sequence analysis, the Similarity Matrix of Proteins (SIMAP) database aims to provide a comprehensive and up-to-date dataset of the pre-calculated sequence similarity matrix and sequence-based features like InterPro domains for all proteins contained in the major public sequence databases. As of September 2007, SIMAP covers approximately 17 million proteins and more than 6 million non-redundant sequences and provides a complete annotation based on InterPro 16. Novel features of SIMAP include a new, portlet-based web portal providing multiple, structured views on retrieved proteins and integration of protein clusters and a unique search method for similar domain architectures. Access to SIMAP is freely provided for academic use through the web portal for individuals at http://mips.gsf.de/simap/and through Web Services for programmatic access at http://mips.gsf.de/webservices/services/SimapService2.0?wsdl.


Asunto(s)
Bases de Datos de Proteínas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Internet , Estructura Terciaria de Proteína , Proteínas/clasificación , Interfaz Usuario-Computador
14.
Methods Mol Biol ; 396: 3-15, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18025682

RESUMEN

Conserved domains carry many of the functional features found in the proteins of an organism. This includes not only catalytic activity, substrate binding, and structural features but also molecular adapters, which mediate the physical interactions between proteins or proteins with other molecules. In addition, two conserved domains can be linked not by physical contact but by a common function like forming a binding pocket. Although a wealth of experimental data has been collected and carefully curated for protein-protein interactions, as of today little useful data is available from major databases with respect to relations on the domain level. This lack of data makes computational prediction of domain-domain interactions a very important endeavor. In this chapter, we discuss the available experimental data (iPfam) and describe some important approaches to the problem of identifying interacting and/or functionally linked domain pairs from different kinds of input data. Specifically, we will discuss phylogenetic profiling on the level of conserved protein domains on one hand and inference of domain-interactions from observed or predicted protein-protein interactions datasets on the other. We explore the predictive power of these predictions and point out the importance of deploying as many different methods as possible for the best results.


Asunto(s)
Proteínas/química , Catálisis , Conformación Proteica , Proteínas/metabolismo , Especificidad por Sustrato
15.
BMC Biol ; 5: 44, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17925023

RESUMEN

BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.


Asunto(s)
Bases de Datos de Proteínas/normas , Procesamiento de Lenguaje Natural , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Biología Computacional , Gráficos por Computador , Sistemas de Administración de Bases de Datos , Proteómica/normas , Interfaz Usuario-Computador
16.
Nat Biotechnol ; 25(8): 894-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17687370

RESUMEN

A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.


Asunto(s)
Bases de Datos de Proteínas/normas , Guías como Asunto , Almacenamiento y Recuperación de la Información/normas , Mapeo de Interacción de Proteínas/normas , Proteómica/normas , Investigación/normas , Humanos , Internacionalidad
17.
Bioinformatics ; 22(8): 997-8, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16481337

RESUMEN

UNLABELLED: Conserved domains represent essential building blocks of most known proteins. Owing to their role as modular components carrying out specific functions they form a network based both on functional relations and direct physical interactions. We have previously shown that domain interaction networks provide substantially novel information with respect to networks built on full-length protein chains. In this work we present a comprehensive web resource for exploring the Domain Interaction MAp (DIMA), interactively. The tool aims at integration of multiple data sources and prediction techniques, two of which have been implemented so far: domain phylogenetic profiling and experimentally demonstrated domain contacts from known three-dimensional structures. A powerful yet simple user interface enables the user to compute, visualize, navigate and download domain networks based on specific search criteria. AVAILABILITY: http://mips.gsf.de/genre/proj/dima


Asunto(s)
Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información/métodos , Internet , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Algoritmos , Sistemas de Administración de Bases de Datos , Estructura Terciaria de Proteína , Interfaz Usuario-Computador
18.
Nucleic Acids Res ; 34(Database issue): D252-6, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381858

RESUMEN

Similarity Matrix of Proteins (SIMAP) (http://mips.gsf.de/simap) provides a database based on a pre-computed similarity matrix covering the similarity space formed by >4 million amino acid sequences from public databases and completely sequenced genomes. The database is capable of handling very large datasets and is updated incrementally. For sequence similarity searches and pairwise alignments, we implemented a grid-enabled software system, which is based on FASTA heuristics and the Smith-Waterman algorithm. Our ProtInfo system allows querying by protein sequences covered by the SIMAP dataset as well as by fragments of these sequences, highly similar sequences and title words. Each sequence in the database is supplemented with pre-calculated features generated by detailed sequence analyses. By providing WWW interfaces as well as web-services, we offer the SIMAP resource as an efficient and comprehensive tool for sequence similarity searches.


Asunto(s)
Bases de Datos de Proteínas , Homología de Secuencia de Aminoácido , Internet , Alineación de Secuencia , Programas Informáticos , Interfaz Usuario-Computador
19.
Nucleic Acids Res ; 34(Database issue): D436-41, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381906

RESUMEN

In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Internet , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Programas Informáticos , Técnicas del Sistema de Dos Híbridos , Interfaz Usuario-Computador
20.
Nucleic Acids Res ; 34(Database issue): D456-8, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381910

RESUMEN

The MIPS Fusarium graminearum Genome Database (FGDB) is a comprehensive genome database on one of the most devastating fungal plant pathogens of wheat and barley. FGDB provides information on two gene sets independently derived by automated annotation of the F.graminearum genome sequence. A complete manually revised gene set will be completed within the near future. The initial results of systematic manual correction of gene calls are already part of the current gene set. The database can be accessed to retrieve information from bioinformatics analyses and functional classifications of the proteins. The data are also organized in the well established MIPS catalogs and novel query techniques are available to search the data. The comprehensive set of gene calls was also used for the design of an Affymetrix GeneChip. The resource is accessible on http://mips.gsf.de/genre/proj/fusarium/.


Asunto(s)
Bases de Datos Genéticas , Fusarium/genética , Genoma Fúngico , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Genómica , Internet , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...