Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 374(6569): 874-879, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762476

RESUMEN

In mammals and flies, only one cell in a multicellular female germline cyst becomes an oocyte, but how symmetry is broken to select the oocyte is unknown. Here, we show that the microtubule (MT) minus end-stabilizing protein Patronin/CAMSAP marks the future Drosophila oocyte and is required for oocyte specification. The spectraplakin Shot recruits Patronin to the fusome, a branched structure extending into all cyst cells. Patronin stabilizes more MTs in the cell with the most fusome material. Our data suggest that this weak asymmetry is amplified by Dynein-dependent transport of Patronin-stabilized MTs. This forms a polarized MT network, along which Dynein transports oocyte determinants into the presumptive oocyte. Thus, Patronin amplifies a weak fusome anisotropy to break symmetry and select one cell to become the oocyte.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Germinativas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Oocitos/fisiología , Animales , Anisotropía , Drosophila melanogaster , Dineínas/metabolismo , Femenino , Células Germinativas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Oocitos/ultraestructura , Orgánulos/metabolismo , Orgánulos/ultraestructura
2.
Bioinformatics ; 25(4): 548-9, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19126575

RESUMEN

SUMMARY: Understanding developmental processes and building towards integrative systems biology require detailed knowledge of the spatio-temporal expression of genes and proteins. We have developed a software package for collecting, storing and searching the annotation of protein or gene expression patterns in Drosophila melanogaster. Using standard Drosophila anatomy and Gene Ontologies, the system can readily capture expression patterns at any stage of development and in all recognized tissue types as well as details of sub-cellular localization. The web-based system allows multiple groups to work in collaboration and share images and annotation. AVAILABILITY: http://www.flannotator.org.uk/.


Asunto(s)
Biología Computacional/métodos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Programas Informáticos , Animales , Bases de Datos Genéticas , Bases de Datos de Proteínas , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Genes de Insecto , Internet , Interfaz Usuario-Computador
4.
Annu Rev Cell Dev Biol ; 17: 569-614, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11687499

RESUMEN

The intracellular localization of mRNA, a common mechanism for targeting proteins to specific regions of the cell, probably occurs in most if not all polarized cell types. Many of the best characterized localized mRNAs are found in oocytes and early embryos, where they function as localized determinants that control axis formation and the development of the germline. However, mRNA localization has also been shown to play an important role in somatic cells, such as neurons, where it may be involved in learning and memory. mRNAs can be localized by a variety of mechanisms including local protection from degradation, diffusion to a localized anchor, and active transport, and we consider the evidence for each of these processes, before discussing the cis-acting elements that direct the localization of specific mRNAs and the trans-acting factors that bind them.


Asunto(s)
Células Eucariotas/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/fisiología , Animales , Transporte Biológico , Compartimento Celular , Núcleo Celular/metabolismo , Polaridad Celular , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos , Plasticidad Neuronal , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
5.
J Mol Biol ; 313(3): 511-24, 2001 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11676536

RESUMEN

The proper localization of bicoid (bcd) mRNA requires cis-acting signals within its 3' untranslated region (UTR) and trans-acting factors such as Staufen. Dimerization of bcd mRNA through intermolecular base-pairing between two complementary loops of domain III of the 3'UTR was proposed to be important for particle formation in the embryo. The participation in the dimerization process of each domain building the 3'UTR was evaluated by thermodynamic and kinetic analysis of various mutated and truncated RNAs. Although sequence complementarity between the two loops of domain III is required for initiating mRNA dimerization, the initial reversible loop-loop complex is converted rapidly into an almost irreversible complex. This conversion involves parts of RNA outside of domain III that promote initial recognition, and dimerization can be inhibited by sense or antisense oligonucleotides only before conversion has proceeded. Injection of the different bcd RNA variants into living Drosophila embryos shows that all elements that inhibit RNA dimerization in vitro prevent formation of localized particles containing Staufen. Particle formation appeared to be dependent on both mRNA dimerization and other element(s) in domains IV and V. Domain III of bcd mRNA could be substituted by heterologous dimerization motifs of different geometry. The resulting dimers were converted into stable forms, independently of the dimerization module used. Moreover, these chimeric RNAs were competent in forming localized particles and recruiting Staufen. The finding that the dimerization domain of bcd mRNA is interchangeable suggests that dimerization by itself, and not the precise geometry of the intermolecular interactions, is essential for the localization process. This suggests that the stabilizing interactions that are formed during the second step of the dimerization process might represent crucial elements for Staufen recognition and localization.


Asunto(s)
Regiones no Traducidas 3'/química , Regiones no Traducidas 3'/metabolismo , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética , Conformación de Ácido Nucleico , Transactivadores/genética , Regiones no Traducidas 3'/genética , Animales , Emparejamiento Base , Secuencia de Bases , Transporte Biológico , Dimerización , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Genes de Insecto/genética , Cinética , Modelos Biológicos , Mutación/genética , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Transporte de Proteínas , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Termodinámica
6.
Genome Biol ; 2(9): RESEARCH0036, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11574055

RESUMEN

BACKGROUND: Genetic screens in Drosophila have provided a wealth of information about a variety of cellular and developmental processes. It is now possible to screen for mutant phenotypes in virtually any cell at any stage of development by performing clonal screens using the flp/FRT system. The rate-limiting step in the analysis of these mutants is often the identification of the mutated gene, however, because traditional mapping strategies rely mainly on genetic and cytological markers that are not easily linked to the molecular map. RESULTS: Here we describe the development of a single-nucleotide polymorphism (SNP) map for chromosome arm 3R. The map contains 73 polymorphisms between the standard FRT chromosome, and a mapping chromosome that carries several visible markers (rucuca), at an average density of one SNP per 370 kilobases (kb). Using this collection, we show that mutants can be mapped to a 400 kb interval in a single meiotic mapping cross, with only a few hundred SNP detection reactions. Discovery of further SNPs in the region of interest allows the mutation to be mapped with the same recombinants to a region of about 50 kb. CONCLUSION: The combined use of standard visible markers and molecular polymorphisms in a single mapping strategy greatly reduces both the time and cost of mapping mutations, because it requires at least four times fewer SNP detection reactions than a standard approach. The use of this map, or others developed along the same lines, will greatly facilitate the identification of the molecular lesions in mutants from clonal screens.


Asunto(s)
Mapeo Cromosómico/métodos , Drosophila melanogaster/genética , Mutación/genética , Animales , Cruzamientos Genéticos , Femenino , Genes de Insecto/genética , Masculino , Polimorfismo de Nucleótido Simple/genética
7.
Curr Biol ; 11(11): 901-6, 2001 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-11516655

RESUMEN

The anterior-posterior axis of C. elegans is defined by the asymmetric division of the one-cell zygote, and this is controlled by the PAR proteins, including PAR-3 and PAR-6, which form a complex at the anterior of the cell, and PAR-1, which localizes at the posterior [1-4]. PAR-1 plays a similar role in axis formation in Drosophila: the protein localizes to the posterior of the oocyte and is necessary for the localization of the posterior and germline determinants [5, 6]. PAR-1 has recently been shown to have an earlier function in oogenesis, where it is required for the maintenance of oocyte fate and the posterior localization of oocyte-specific markers [7, 8]. Here, we show that the homologs of PAR-3 (Bazooka) and PAR-6 are also required to maintain oocyte fate. Germline clones of mutants in either gene give rise to egg chambers that develop 16 nurse cells and no oocyte. Furthermore, oocyte-specific factors, such as Orb protein and the centrosomes, still localize to one cell but fail to move from the anterior to the posterior cortex. Thus, PAR-1, Bazooka, and PAR-6 are required for the earliest polarity in the oocyte, providing the first example in Drosophila where the three homologs function in the same process. Although these PAR proteins therefore seem to play a conserved role in early anterior-posterior polarity in C. elegans and Drosophila, the relationships between them are different, as the localization of PAR-1 does not require Bazooka or PAR-6 in Drosophila, as it does in the worm.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas Portadoras/metabolismo , Proteínas de Drosophila , Drosophila/fisiología , Proteínas de Insectos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Oogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Portadoras/genética , Diferenciación Celular , Polaridad Celular , Femenino , Proteínas de Insectos/genética , Oocitos/fisiología , Óvulo/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética
8.
J Cell Biol ; 154(3): 511-23, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11481346

RESUMEN

The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Polaridad Celular/fisiología , Clonación Molecular , Drosophila , Femenino , Proteínas de Insectos/análisis , Masculino , Microtúbulos/fisiología , Datos de Secuencia Molecular , Mutación/fisiología , Oocitos/citología , Oocitos/fisiología , Oogénesis/fisiología , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/metabolismo , Recombinación Genética/fisiología , Homología de Secuencia de Aminoácido
9.
Genes Dev ; 15(11): 1393-405, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11390359

RESUMEN

The body axes of Drosophila are established during oogenesis through reciprocal interactions between the germ line cells and the somatic follicle cells that surround them. The Notch pathway is required at two stages in this process: first, for the migration of the follicle cells around the germ line cyst and, later, for the polarization of the anterior-posterior (A-P) axis of the oocyte. Its function in these events, however, has remained controversial. Using clonal analysis, we show that Notch signaling controls cell proliferation and differentiation in the whole follicular epithelium. Notch mutant follicle cells remain in a precursor state and fail to switch from the mitotic cell cycle to the endocycle. Furthermore, removal of Delta from the germ line produces an identical phenotype, showing that Delta signals from the germ cells to control the timing of follicle cell differentiation. This explains the axis formation defects in Notch mutants, which arise because undifferentiated posterior follicle cells cannot signal to polarize the oocyte. Delta also signals from the germ line to Notch in the soma earlier in oogenesis to control the differentiation of the polar and stalk follicle cells. The germ line therefore regulates the development of the follicle cells through two complementary signaling pathways: Gurken signals twice to control spatial patterning, whereas Delta signals twice to exert temporal control.


Asunto(s)
Proteínas de Drosophila , Células Germinativas/citología , Proteínas de la Membrana/fisiología , Oogénesis/fisiología , Folículo Ovárico/citología , Factor de Crecimiento Transformador alfa , Animales , Diferenciación Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Drosophila , Femenino , Técnica del Anticuerpo Fluorescente , Células Germinativas/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Mitosis , Oogénesis/genética , Folículo Ovárico/fisiología , Óvulo/citología , Óvulo/fisiología , Fenotipo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores Notch , Transducción de Señal/genética , Transducción de Señal/fisiología , Transactivadores/genética , Transactivadores/fisiología , Factores de Crecimiento Transformadores/genética , Factores de Crecimiento Transformadores/fisiología
10.
Development ; 128(10): 1889-97, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11311168

RESUMEN

During early Drosophila oogenesis, one cell from a cyst of 16 germ cells is selected to become the oocyte, and accumulates oocyte-specific proteins and the centrosomes from the other 15 cells. Here we show that the microtubule cytoskeleton and the centrosomes follow the same stepwise restriction to one cell as other oocyte markers. Surprisingly, the centrosomes still localise to one cell after colcemid treatment, and in BicD and egl mutants, which abolish the localisation of all other oocyte markers and the polarisation of the microtubule cytoskeleton. In contrast, the centrosomes fail to migrate in cysts mutant for Dynein heavy chain 64C, which disrupts the fusome. Thus, centrosome migration is independent of the organisation of the microtubule cytoskeleton, and seems to depend instead on the polarity of the fusome.


Asunto(s)
Centrosoma/fisiología , Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Drosophila/genética , Proteínas de Insectos/genética , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Oogénesis/fisiología , Animales , Animales Modificados Genéticamente , Polaridad Celular , Quimera/genética , Citoesqueleto/fisiología , Drosophila/fisiología , Dineínas/fisiología , Femenino , Genes de Insecto , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Microtúbulos/fisiología , Movimiento , Mutación , Oocitos/ultraestructura
11.
Development ; 128(7): 1201-9, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11245586

RESUMEN

The PAR-1 kinase is required for the posterior localisation of the germline determinants in C. elegans and Drosophila, and localises to the posterior of the zygote and the oocyte in each case. We show that Drosophila PAR-1 is also required much earlier in oogenesis for the selection of one cell in a germline cyst to become the oocyte. Although the initial steps in oocyte determination are delayed, three markers for oocyte identity, the synaptonemal complex, the centrosomes and Orb protein, still become restricted to one cell in mutant clones. However, the centrosomes and Orb protein fail to translocate from the anterior to the posterior cortex of the presumptive oocyte in region 3 of the germarium, and the cell exits meiosis and becomes a nurse cell. Furthermore, markers for the minus ends of the microtubules also fail to move from the anterior to the posterior of the oocyte in mutant clones. Thus, PAR-1 is required for the maintenance of oocyte identity, and plays a role in microtubule-dependent localisation within the oocyte at two stages of oogenesis. Finally, we show that PAR-1 localises on the fusome, and provides a link between the asymmetry of the fusome and the selection of the oocyte.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Drosophila , Oogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Fusión Celular , Drosophila/fisiología , Cinesinas , Meiosis , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutagénesis , Oocitos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Cell ; 101(4): 377-88, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10830165

RESUMEN

In C. elegans, the PAR-1 kinase is localized to the posterior of the zygote and is required for anterior-posterior axis formation. Here, we report that a Drosophila PAR-1 homolog localizes to the posterior of the oocyte with oskar mRNA. Furthermore, par-1 mutants show a novel polarity phenotype in which bicoid mRNA accumulates normally at the anterior, but oskar mRNA is redirected to the center of the oocyte, resulting in embryonic patterning defects. These phenotypes arise from a disorganization of the oocyte microtubule cytoskeleton, consistent with reports that mammalian PAR-1 homologs regulate microtubule dynamics. Thus, Drosophila PAR-1 may remodel the oocyte microtubule network to define the posterior as the site for oskar localization. These results identify a molecular parallel between anterior-posterior polarization in Drosophila and C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Citoesqueleto/metabolismo , Proteínas de Drosophila , Drosophila/genética , Proteínas del Helminto/genética , Proteínas de Insectos/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Drosophila/metabolismo , Drosophila/ultraestructura , Femenino , Regulación de la Expresión Génica , Proteínas del Helminto/metabolismo , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Oocitos/metabolismo , Oocitos/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Development ; 127(13): 2785-94, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10851125

RESUMEN

The oocyte is the only cell in Drosophila that goes through meiosis with meiotic recombination, but several germ cells in a 16-cell cyst enter meiosis and form synaptonemal complexes (SC) before one cell is selected to become the oocyte. Using an antibody that recognises a component of the SC or the synapsed chromosomes, we have analysed how meiosis becomes restricted to one cell, in relation to the other events in oocyte determination. Although BicD and egl mutants both cause the development of cysts with no oocyte, they have opposite effects on the behaviour of the SC: none of the cells in the cyst form SC in BicD null mutants, whereas all of the cells do in egl and orb mutants. Furthermore, unlike all cytoplasmic markers for the oocyte, the SC still becomes restricted to one cell when the microtubules are depolymerised, even though the BicD/Egl complex is not localised. These results lead us to propose a model in which BicD, Egl and Orb control entry into meiosis by regulating translation.


Asunto(s)
Proteínas de Drosophila , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/fisiología , Meiosis/fisiología , Microtúbulos/fisiología , Oocitos/fisiología , Proteínas de Unión al ARN/fisiología , Alelos , Animales , Anticuerpos , Biomarcadores , Citoplasma/metabolismo , Demecolcina/farmacología , Proteínas del Huevo/genética , Proteínas de Insectos/genética , Mutación , Proteínas de Unión al ARN/genética , Recombinación Genética , Complejo Sinaptonémico/fisiología , Factores de Tiempo
14.
EMBO J ; 19(5): 997-1009, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10698941

RESUMEN

The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem-loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix alpha1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix alpha1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Transfección
15.
EMBO J ; 19(6): 1366-77, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10716936

RESUMEN

Drosophila Staufen protein is required for the localization of oskar mRNA to the posterior of the oocyte, the anterior anchoring of bicoid mRNA and the basal localization of prospero mRNA in dividing neuroblasts. The only regions of Staufen that have been conserved throughout animal evolution are five double-stranded (ds)RNA-binding domains (dsRBDs) and a short region within an insertion that splits dsRBD2 into two halves. dsRBDs 1, 3 and 4 bind dsRNA in vitro, but dsRBDs 2 and 5 do not, although dsRBD2 does bind dsRNA when the insertion is removed. Full-length Staufen protein lacking this insertion is able to associate with oskar mRNA and activate its translation, but fails to localize the RNA to the posterior. In contrast, Staufen lacking dsRBD5 localizes oskar mRNA normally, but does not activate its translation. Thus, dsRBD2 is required for the microtubule-dependent localization of osk mRNA, and dsRBD5 for the derepression of oskar mRNA translation, once localized. Since dsRBD5 has been shown to direct the actin-dependent localization of prospero mRNA, distinct domains of Staufen mediate microtubule- and actin-based mRNA transport.


Asunto(s)
Secuencia Conservada/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Insectos/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Tipificación del Cuerpo/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Proteínas de Homeodominio/genética , Proteínas de Insectos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Estructura Terciaria de Proteína , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Eliminación de Secuencia/genética , Transactivadores/genética , Transgenes/genética , Transgenes/fisiología
16.
Trends Cell Biol ; 9(12): M60-4, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10611685

RESUMEN

Single-cell patterning begins with an asymmetric cue that orients the axis of polarity. Despite great diversity in the types of cues, common mechanisms appear to mediate the polarizing response. Rho-family GTPases initially process and reinforce polarity cues by remodelling cortical actin, and these local asymmetries are subsequently propagated to the microtubules, membrane and secretory pathway to generate the final pattern. Homologues of the yeast polarity genes fulfil similar functions in higher eukaryotes, revealing a fundamental conservation in how polarity arises. Unlike yeast, however, more complex eukaryotic cells can manifest multiple axes of polarity, suggesting that additional mechanisms have evolved to generate more elaborate patterns.


Asunto(s)
Fenómenos Fisiológicos Celulares , Polaridad Celular/fisiología , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Microtúbulos/metabolismo
17.
Curr Opin Genet Dev ; 9(4): 396-404, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10449356

RESUMEN

Recent work on Drosophila oogenesis has begun to reveal how the first asymmetries in development arise and how these relate to the later events that localise the positional cues which define the embryonic axes. The Cadherin-dependent positioning of the oocyte creates an anterior-posterior polarity that is transmitted to the embryo through the localisation and localised translation of bicoid, oskar, and nanos mRNA. In contrast, dorsal-ventral polarity arises from the random migration of the nucleus to the anterior of the oocyte, where it determines where gurken mRNA is translated and localised. Gurken signalling then defines the embryonic dorsal-ventral axis by restricting pipe expression to the ventral follicle cells, where Pipe regulates the production of an unidentified cue that activates the Toll signalling pathway.


Asunto(s)
Polaridad Celular , Drosophila/embriología , Oogénesis , Animales , Drosophila/citología , Drosophila/genética , Mutación , Oocitos
19.
Development ; 125(18): 3635-44, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9716529

RESUMEN

The anterior-posterior axis of Drosophila originates from two symmetry-breaking steps during early oogenesis. First, one of the two pro-oocytes within the cyst of 16 germline cells is selected to become the oocyte. This cell then comes to lie posterior to the other germline cells of the cyst, thereby defining the polarity of the axis. Here we show that the oocyte reaches the posterior of the cyst in two steps. (1) The cyst flattens as it enters region 2b of the germarium to place the two pro-oocytes in the centre of the cyst, where they contact the posterior follicle cells. (2) One cell is selected to become the oocyte and protrudes into the posterior follicle cell layer when the cyst rounds up on entering region 3. During this germ cell rearrangement, the components of the homophilic cadherin adhesion complex, DE-cadherin, Armadillo and alpha-catenin, accumulate along the border between the oocyte and the posterior follicle cells. Furthermore, the positioning of the oocyte requires cadherin-dependent adhesion between these two cell types, since the oocyte is frequently misplaced when DE-cadherin is removed from either the germline or the posterior follicle cells. We conclude that the oocyte reaches the posterior of the germline cyst because it adheres more strongly to the posterior follicle cells than its neighbours during the germ cell rearrangement that occurs as the cyst moves into region 3. The Drosophila anterior-posterior axis therefore becomes polarised by an unusual cadherin-mediated adhesion between a germ cell and mesodermal follicle cells.


Asunto(s)
Cadherinas/fisiología , Polaridad Celular , Proteínas de Drosophila , Drosophila/embriología , Oocitos/citología , Transactivadores , Alelos , Animales , Proteínas del Dominio Armadillo , Cadherinas/genética , Adhesión Celular , Desarrollo Embrionario , Proteínas de Insectos/fisiología , Factores de Transcripción
20.
Development ; 125(15): 2837-46, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9655806

RESUMEN

Gurken signals from the oocyte to the adjacent follicle cells twice during Drosophila oogenesis; first to induce posterior fate, thereby polarising the anterior-posterior axis of the future embryo and then to induce dorsal fate and polarise the dorsal-ventral axis. Here we show that Gurken induces two different follicle cell fates because the follicle cells at the termini of the egg chamber differ in their competence to respond to Gurken from the main-body follicle cells in between. By removing the putative Gurken receptor, Egfr, in clones of cells, we show that Gurken signals directly to induce posterior fate in about 200 cells, defining a terminal competence domain that extends 10-11 cell diameters from the pole. Furthermore, small clones of Egfr mutant cells at the posterior interpret their position with respect to the pole and differentiate as the appropriate anterior cell type. Thus, the two terminal follicle cell populations contain a symmetric prepattern that is independent of Gurken signalling. These results suggest a three-step model for the anterior-posterior patterning of the follicular epithelium that subdivides this axis into at least five distinct cell types. Finally, we show that Notch plays a role in both the specification and patterning of the terminal follicle cells, providing a possible explanation for the defect in anterior-posterior axis formation caused by Notch and Delta mutants.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Drosophila/embriología , Células Epiteliales/citología , Oogénesis , Ovario/crecimiento & desarrollo , Factor de Crecimiento Transformador alfa , Animales , Comunicación Celular , Polaridad Celular , Receptores ErbB/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Proteínas de la Membrana/metabolismo , Morfogénesis , Receptor ErbB-2/metabolismo , Receptores Notch , Factores de Crecimiento Transformadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...