Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 769: 145214, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493909

RESUMEN

The natural variation of multiple abiotic stresses in hyper-seasonal edaphic savanna provides a unique opportunity to study the rhizobacteriome community structure of plants adapted to climate change-like conditions in the humid tropics. In this study, we evaluated changes in soil, plant and rhizobacteriome community structure parameters across seasons (wet and dry) in two edaphic savannas (SV-1 and SV-5) using four dominant plant species. We then examined relationships between rhizobacteriome community structure and soil properties, plant biomass, and conventional and novel root traits. We further hypothesized that plants adapted to the Aripo Savanna had a core rhizobacteriome, which was specific to plant species and related to root foraging traits. Our results showed that cation exchange capacity (CEC) and the concentration of micronutrients (Fe, Cu and B) were the only soil factors that differed across savanna and season, respectively. Plant biomass traits were generally higher in the dry season, with a higher allocation to root growth in SV-5. Root traits were more plastic in SV-5, and network length-distribution was the only root trait which showed a consistent pattern of lower values in the dry season for three of the dominant plant species. Rhizobacterial community compositions were dominated by Proteobacteria and Acidobacteria, as well as WPS-2, which is dominant in extreme environments. We identified a shared core rhizobacteriome across plant species and savannas. Cation exchange capacity was a major driver of rhizobacterial community assemblies across savannas. Savanna-specific drivers of rhizobacterial community assemblies included CEC and Fe for SV-1, and CEC, TDS, NH4+, NO3-, Mn, K, and network length-distribution for SV-5. Plant factors on the microbiome were minimal, and host selectivity was mediated by the seasonal changes. We conclude that edaphoclimatic factors (soil and season) are the key determinants influencing rhizobacteriome community structure in multiple stressed-environments, which are ecologically similar to the Aripo Savanna.


Asunto(s)
Ecosistema , Pradera , Biomasa , Plantas , Suelo
2.
Environ Technol ; 35(5-8): 590-601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24645438

RESUMEN

High-rate composting studies on green waste, i.e. banana leaves (BL) and lawn clippings (LC), were conducted in 0.25-m3 rotary barrel composters to evaluate and model changes in key physico-chemical parameters during composting. Time to compost maturity and antagonistic effects and relationships of composts against Pythium ultimum were also investigated. Higher temperatures were achieved in LC compost (LCC), which did not translate to higher total organic carbon (TOC) loss but resulted in lower carbon to nitrogen ratio (C:N) and a more mature compost. With the exception of electrical conductivity (EC), net decreases were observed in pH, TOC and C:N across compost types. Total Kjeldahl nitrogen (TKN) showed a net increase in LCC and a net decrease in BLC. With the exception of TOC and pH, the results showed that compost type and time had a significant effect on the respective TKN, EC and C:N models. Compost temperature and TOC were best described by the critical exponential and rectangular hyperbola functions, respectively. Whereas TKN, C:N and pH were described using double Fourier functions and EC using Fourier functions. Composts achieved maturity within 19 days and significantly inhibited the growth of P. ultimum. Bacterial population was positively related to growth inhibition (GI) across compost types, whereas total microbial population had a positive relationship with GI in LCC. Evidence suggests that multiple groups of microorganisms contributed to GI through antibiosis and competition for resources. Composts were determined to be suitable for use as components of plant growth substrates based on compost maturity indices.


Asunto(s)
Modelos Teóricos , Pythium/crecimiento & desarrollo , Suelo , Biodegradación Ambiental , Carbono/química , Conductividad Eléctrica , Diseño de Equipo , Análisis de Fourier , Concentración de Iones de Hidrógeno , Estiércol/microbiología , Musa/metabolismo , Nitrógeno/química , Tamaño de la Partícula , Hojas de la Planta , Poaceae/metabolismo , Análisis de Regresión , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA