Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645763

RESUMEN

Current gene editing approaches in eukaryotic cells are limited to single base edits or small DNA insertions and deletions, and remain encumbered by unintended permanent effects and significant challenges in the delivery of large DNA cargo. Here we describe Splice Editing, a generalizable platform to correct gene transcripts in situ by programmable insertion or replacement of large RNA segments. By combining CRISPR-mediated RNA targeting with endogenous cellular RNA-splicing machinery, Splice Editing enables efficient, precise, and programmable large-scale editing of gene targets without DNA cleavage or mutagenesis. RNA sequencing and measurement of spliced protein products confirm that Splice Editing achieves efficient and specific targeted RNA and protein correction. We show that Splice Editors based on novel miniature RNA-targeting CRISPR-Cas systems discovered and characterized in this work can be packaged for effective delivery to human cells and affect different types of edits across multiple targets and cell lines. By editing thousands of bases simultaneously in a single reversible step, Splice Editing could expand the treatable disease population for monogenic diseases with large allelic diversity without the permanent unintended effects of DNA editing.

2.
Mol Ther ; 27(1): 178-187, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528089

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Mucopolisacaridosis I/terapia , Nucleasas con Dedos de Zinc/metabolismo , Animales , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Femenino , Glicosaminoglicanos/metabolismo , Iduronidasa/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Masculino , Ratones , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Nucleasas con Dedos de Zinc/genética
3.
Mol Ther ; 26(4): 1127-1136, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29580682

RESUMEN

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a "safe harbor" site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.


Asunto(s)
Metabolismo Energético , Dosificación de Gen , Edición Génica , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/metabolismo , Fenotipo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Activación Enzimática , Técnicas de Transferencia de Gen , Hepatocitos/metabolismo , Intrones , Ratones , Mucopolisacaridosis II/patología , Mucopolisacaridosis II/fisiopatología , Dedos de Zinc/genética
4.
J Biol Chem ; 286(31): 27718-28, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21610081

RESUMEN

Prion diseases are fatal neurodegenerative diseases caused by the accumulation of the misfolded isoform (PrP(Sc)) of the prion protein (PrP(C)). Cell-based screens have identified several compounds that induce a reduction in PrP(Sc) levels in infected cultured cells. However, the molecular targets of most antiprion compounds remain unknown. We undertook a large-scale, unbiased, cell-based screen for antiprion compounds and then investigated whether a representative subset of the active molecules had measurable affinity for PrP, increased the susceptibility of PrP(Sc) to proteolysis, or altered the cellular localization or expression level of PrP(C). None of the antiprion compounds showed in vitro affinity for PrP or had the ability to disaggregate PrP(Sc) in infected brain homogenates. These observations suggest that most antiprion compounds identified in cell-based screens deploy their activity via non-PrP targets in the cell. Our findings indicate that in comparison to PrP conformers themselves, proteins that play auxiliary roles in prion propagation may be more effective targets for future drug discovery efforts.


Asunto(s)
Proteínas PrPSc/antagonistas & inhibidores , Animales , Calorimetría , Dicroismo Circular , Ensayo de Inmunoadsorción Enzimática , Hidrólisis , Inmunohistoquímica , Cinética , Ratones , Proteínas PrPSc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...