Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37237903

RESUMEN

Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.

2.
Curr Opin Immunol ; 70: 15-26, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33429228

RESUMEN

Sustained transcriptional activation of the aryl hydrocarbon receptor (AhR) promotes tumour growth and impairs the immune defence, at least for cutaneous melanoma and glioma. AhR ligands are produced by the tumour microenvironment (TME) and by the tumour itself (intracrine). The recent identification of interleukin-4-induced-1 (IL4I1), a parallel pathway to indoleamine 2 3-dioxygenase 1 (IDO1)/ tryptophan 2,3-dioxygenase (TDO), and its ability to generate AhR ligands, confirms that a complete inhibition of AhR ligand production might be difficult to reach. Here, we have focused on recent discoveries explaining the large varieties of AhR ligands and the functional consequences in terms of cancer cell plasticity and consecutive therapy resistance. We also examined therapeutic strategies targeting the AhR signalling pathway and their possible adverse effects. Since the end of 2019, two phase I clinical trials have investigated the ability of the AhR antagonist to 'reset' the immune system and re-sensitize the cancer cells to therapies by preventing their dedifferentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Neoplasias/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Desdiferenciación Celular/efectos de los fármacos , Desdiferenciación Celular/inmunología , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...