Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 63, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653471

RESUMEN

Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.


Asunto(s)
Pliegue de Proteína , Factores de Transcripción , Unión Proteica , Factores de Transcripción/metabolismo
2.
Nat Commun ; 13(1): 7073, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400768

RESUMEN

The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.


Asunto(s)
Glutamina , Péptidos , Conformación Proteica en Hélice alfa , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Péptidos/química
3.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
4.
J Mol Biol ; 433(24): 167320, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687712

RESUMEN

Protein intrinsic disorder is essential for organization of transcription regulatory interactomes. In these interactomes, the majority of transcription factors as well as their interaction partners have co-existing order and disorder. Yet, little attention has been paid to their interplay. Here, we investigate how order is affected by flanking disorder in the folded αα-hub domain RST from Radical-Induced Cell Death1 (RCD1), central in a large interactome of transcription factors. We show that the intrinsically disordered C-terminal tail of RCD1-RST shifts its conformational ensemble towards a pseudo-bound state through weak interactions with the ligand-binding pocket. An unfolded excited state is also accessible on the ms timescale independent of surrounding disordered regions, but its population is lowered by 50% in their presence. Flanking disorder additionally lowers transcription factor binding-affinity without affecting the dissociation rate constant, in accordance with similar bound-states assessed by NMR. The extensive dynamics of the RCD1-RST domain, modulated by flanking disorder, is suggestive of its adaptation to many different transcription factor ligands. The study illustrates how disordered flanking regions can tune fold and function through ensemble redistribution and is of relevance to modular proteins in general, many of which play key roles in regulation of genes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Nucleares/química , Pliegue de Proteína , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
5.
J Am Chem Soc ; 143(36): 14540-14550, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473923

RESUMEN

Intrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R. S. Spolar and M. T. Record presented a thermodynamic approach for estimating changes in conformational entropy based on heat capacity changes, allowing quantification of residues folding upon binding. Here, we adapt the method for studies of intrinsically disordered proteins. We integrate additional data to provide a broader experimental foundation for the underlying relations and, based on >500 protein-protein complexes involving disordered proteins, reassess a key relation between polar and nonpolar surface area changes, previously determined using globular protein folding. We demonstrate the improved suitability of the adapted method to studies of the folded αα-hub domain RST from radical-induced cell death 1, whose interactome is characterized by ID. From extensive thermodynamic data, quantifying the conformational entropy changes upon binding, and comparison to the NMR structure, the adapted method improves accuracy for ID-based studies. Furthermore, we apply the method, in conjunction with NMR, to reveal hitherto undetected effects of interaction-motif context. Thus, inclusion of the disordered context of the DREB2A RST-binding motif induces structuring of the binding motif, resulting in major enthalpy-entropy compensation in the interaction interface. This study, also evaluating additional interactions, demonstrates the strength of the ID-adapted Spolar-Record thermodynamic approach for dissection of structural features of ID-based interactions, easily overlooked in traditional studies, and for translation of these into mechanistic knowledge.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Entropía , Proteínas Intrínsecamente Desordenadas/química , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Factores de Transcripción/química
6.
Cell Commun Signal ; 19(1): 2, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407551

RESUMEN

BACKGROUND: Signal fidelity depends on protein-protein interaction-'hubs' integrating cues from large interactomes. Recently, and based on a common secondary structure motif, the αα-hubs were defined, which are small α-helical domains of large, modular proteins binding intrinsically disordered transcriptional regulators. METHODS: Comparative structural biology. RESULTS: We assign the harmonin-homology-domain (HHD, also named the harmonin N-terminal domain, NTD) present in large proteins such as harmonin, whirlin, cerebral cavernous malformation 2, and regulator of telomere elongation 1 to the αα-hubs. The new member of the αα-hubs expands functionality to include scaffolding of supra-modular complexes mediating sensory perception, neurovascular integrity and telomere regulation, and reveal novel features of the αα-hubs. As a common trait, the αα-hubs bind intrinsically disordered ligands of similar properties integrating similar cellular cues, but without cross-talk. CONCLUSION: The inclusion of the HHD in the αα-hubs has uncovered new features, exemplifying the utility of identifying groups of hub domains, whereby discoveries in one member may cross-fertilize discoveries in others. These features make the αα-hubs unique models for decomposing signal specificity and fidelity. Using these as models, together with other suitable hub domain, we may advance the functional understanding of hub proteins and their role in cellular communication and signaling, as well as the role of intrinsically disordered proteins in signaling networks. Video Abstract.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Ligandos , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
7.
J Biol Chem ; 296: 100226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361159

RESUMEN

Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas Intrínsecamente Desordenadas/química , Complejo Correpresor Histona Desacetilasa y Sin3/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Factores de Transcripción/química , Factores de Transcripción p300-CBP/química , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
8.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32936312

RESUMEN

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Asunto(s)
Proteínas Portadoras/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Dominios Proteicos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Estabilidad Proteica , Termodinámica
9.
Sci Rep ; 9(1): 18927, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831797

RESUMEN

Radical-Induced Cell Death1 (RCD1) functions as a cellular hub interacting with intrinsically disordered transcription factor regions, which lack a well-defined three-dimensional structure, to regulate plant stress. Here, we address the molecular evolution of the RCD1-interactome. Using bioinformatics, its history was traced back more than 480 million years to the emergence of land plants with the RCD1-binding short linear motif (SLiM) identified from mosses to flowering plants. SLiM variants were biophysically verified to be functional and to depend on the same RCD1 residues as the DREB2A transcription factor. Based on this, numerous additional members may be assigned to the RCD1-interactome. Conservation was further strengthened by similar intrinsic disorder profiles of the transcription factor homologs. The unique structural plasticity of the RCD1-interactome, with RCD1-binding induced α-helix formation in DREB2A, but not detectable in ANAC046 or ANAC013, is apparently conserved. Thermodynamic analysis also indicated conservation with interchangeability between Arabidopsis and soybean RCD1 and DREB2A, although with fine-tuned co-evolved binding interfaces. Interruption of conservation was observed, as moss DREB2 lacked the SLiM, likely reflecting differences in plant stress responses. This whole-interactome study uncovers principles of the evolution of SLiM:hub-interactions, such as conservation of α-helix propensities, which may be paradigmatic for disorder-based interactomes in eukaryotes.


Asunto(s)
Evolución Molecular , Glycine max , Hordeum , Proteínas Nucleares , Mapas de Interacción de Proteínas , Proteínas de Soja , Hordeum/química , Hordeum/genética , Hordeum/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína , Proteínas de Soja/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/química , Glycine max/genética , Glycine max/metabolismo
10.
Biomolecules ; 9(5)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052346

RESUMEN

Intrinsically disordered proteins (IDPs) can form functional oligomers and in some cases, insoluble disease related aggregates. It is therefore vital to understand processes and mechanisms that control pathway distribution. Divalent cations including Zn2+ can initiate IDP oligomerisation through the interaction with histidine residues but the mechanisms of doing so are far from understood. Here we apply a multi-disciplinary approach using small angle X-ray scattering, nuclear magnetic resonance spectroscopy, calorimetry and computations to show that that saliva protein Histatin 5 forms highly dynamic oligomers in the presence of Zn2+. The process is critically dependent upon interaction between Zn2+ ions and distinct histidine rich binding motifs which allows for thermodynamic switching between states. We propose a molecular mechanism of oligomerisation, which may be generally applicable to other histidine rich IDPs. Finally, as Histatin 5 is an important saliva component, we suggest that Zn2+ induced oligomerisation may be crucial for maintaining saliva homeostasis.


Asunto(s)
Histidina/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Multimerización de Proteína , Zinc/metabolismo , Secuencia de Aminoácidos , Calorimetría , Histatinas/química , Histatinas/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
11.
Methods Enzymol ; 611: 193-226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471688

RESUMEN

NMR spectroscopy has proven to be a key method for studying intrinsically disordered proteins (IDPs). Nonetheless, traditional NMR methods developed for solving structures of ordered protein complexes are insufficient for the full characterization of dynamic IDP complexes, where the energy landscape is broader and more rugged. Furthermore, due to their high sensitivity to environmental changes, NMR studies of IDP complexes must be conducted with extra care and the observed NMR parameters thoroughly evaluated to enable disentanglement of binding events from ensemble distribution changes. In this chapter, written for the non-NMR expert, we start out by outlining sample preparation for IDP complexes, guide through the recording and evaluation of diagnostic 1H,15N-HSQC spectra, and delineate more sophisticated NMR strategies to follow for the particular type of complex. The most relevant experiments are then described in terms of aims, needs, pitfalls, analysis, and expected outcomes, with references to recent examples.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Animales , Humanos , Proteínas Intrínsecamente Desordenadas/química , Ligandos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos
12.
Structure ; 26(5): 734-746.e7, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29657132

RESUMEN

Communication within cells relies on a few protein nodes called hubs, which organize vast interactomes with many partners. Frequently, hub proteins are intrinsically disordered conferring multi-specificity and dynamic communication. Conversely, folded hub proteins may organize networks using disordered partners. In this work, the structure of the RST domain, a unique folded hub, is solved by nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, and its complex with a region of the transcription factor DREB2A is provided through data-driven HADDOCK modeling and mutagenesis analysis. The RST fold is unique, but similar structures are identified in the PAH (paired amphipathic helix), TAFH (TATA-box-associated factor homology), and NCBD (nuclear coactivator binding domain) domains. We designate them as a group the αα hubs, as they share an αα-hairpin super-secondary motif, which serves as an organizing platform for malleable helices of varying topology. This allows for partner adaptation, exclusion, and selection. Our findings provide valuable insights into structural features enabling signaling fidelity.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas Nucleares/genética , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
13.
Biochem J ; 474(15): 2509-2532, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701416

RESUMEN

Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from 'negative noodles' to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.


Asunto(s)
Eucariontes/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Proteínas Intrínsecamente Desordenadas/química , Cinética , Procesamiento Proteico-Postraduccional , Termodinámica , Factores de Transcripción/química
14.
J Biol Chem ; 292(2): 512-527, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27881680

RESUMEN

Intrinsically disordered protein regions (IDRs) lack a well defined three-dimensional structure but often facilitate key protein functions. Some interactions between IDRs and folded protein domains rely on short linear motifs (SLiMs). These motifs are challenging to identify, but once found they can point to larger networks of interactions, such as with proteins that serve as hubs for essential cellular functions. The stress-associated plant protein radical-induced cell death1 (RCD1) is one such hub, interacting with many transcription factors via their flexible IDRs. To identify the SLiM bound by RCD1, we analyzed the IDRs in three protein partners, DREB2A (dehydration-responsive element-binding protein 2A), ANAC013, and ANAC046, considering parameters such as disorder, context, charges, and pI. Using a combined bioinformatics and experimental approach, we have identified the bipartite RCD1-binding SLiM as (DE)X(1,2)(YF)X(1,4)(DE)L, with essential contributions from conserved aromatic, acidic, and leucine residues. Detailed thermodynamic analysis revealed both favorable and unfavorable contributions from the IDRs surrounding the SLiM to the interactions with RCD1, and the SLiM affinities ranged from low nanomolar to 50 times higher Kd values. Specifically, although the SLiM was surrounded by IDRs, individual intrinsic α-helix propensities varied as shown by CD spectroscopy. NMR spectroscopy further demonstrated that DREB2A underwent coupled folding and binding with α-helix formation upon interaction with RCD1, whereas peptides from ANAC013 and ANAC046 formed different structures or were fuzzy in the complexes. These findings allow us to present a model of the stress-associated RCD1-transcription factor interactome and to contribute to the emerging understanding of the interactions between folded hubs and their intrinsically disordered partners.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Modelos Moleculares , Proteínas Nucleares/química , Pliegue de Proteína , Factores de Transcripción/química , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...