Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 533, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919649

RESUMEN

BACKGROUND: Powdery mildew is a major disease that causes great losses in soybean yield and seed quality. Disease-resistant varieties, which are generated by reducing the impact of susceptibility genes through mutation in host plants, would be an effective approach to protect crops from this disease. The Mildew Locus O (MLO) genes are well-known susceptibility genes for powdery mildew in plant. In this study, we utilized the CRISPR/Cas9 system to induce targeted mutations in the soybean GmMLO genes to improve powdery mildew resistance. RESULTS: A dual-sgRNA CRISPR/Cas9 construct was designed and successfully transferred into the Vietnamese soybean cultivar DT26 through Agrobacterium tumefaciens-mediated transformation. Various mutant forms of the GmMLO genes including biallelic, chimeric and homozygous were found at the T0 generation. The inheritance and segregation of CRISPR/Cas9-induced mutations were confirmed and validated at the T1 and T2 generations. Out of six GmMLO genes in the soybean genome, we obtained the Gmmlo02/Gmmlo19/Gmmlo23 triple and Gmmlo02/Gmmlo19/Gmmlo20/Gmmlo23 quadruple knockout mutants at the T2 generation. When challenged with Erysiphe diffusa, a fungus that causes soybean powdery mildew, all mutant plants showed enhanced resistance to the pathogen, especially the quadruple mutant. The powdery mildew severity in the mutant soybeans was reduced by up to 36.4% compared to wild-type plants. In addition, no pleiotropic effect on soybean growth and development under net-house conditions was observed in the CRISPR/Cas9 mutants. CONCLUSIONS: Our results indicate the involvement of GmMLO02, GmMLO19, GmMLO20 and GmMLO23 genes in powdery mildew susceptibility in soybean. Further research should be conducted to investigate the roles of individual tested genes and the involvement of other GmMLO genes in this disease infection mechanism. Importantly, utilizing the CRISPR/Cas9 system successfully created the Gmmlo transgene-free homozygous mutant lines with enhanced resistance to powdery mildew, which could be potential materials for soybean breeding programs.


Asunto(s)
Sistemas CRISPR-Cas , Glycine max , Glycine max/genética , ARN Guía de Sistemas CRISPR-Cas , Fitomejoramiento , Mutación , Hongos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
2.
Plant Genome ; 16(2): e20171, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34904377

RESUMEN

De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-ß-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.


Asunto(s)
Glycine max , Fijación del Nitrógeno , Glycine max/genética , Glycine max/microbiología , Fijación del Nitrógeno/genética , Urato Oxidasa/metabolismo , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Purinas
3.
BMC Plant Biol ; 21(1): 441, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34587901

RESUMEN

BACKGROUND: Soybean is an economically important crop which flowers predominantly in response to photoperiod. Several major loci controlling the quantitative trait for reproductive timing have been identified, of which allelic combinations at three of these loci, E1, E2, and E3, are the dominant factors driving time to flower and reproductive period. However, functional genomics studies have identified additional loci which affect reproductive timing, many of which are less understood. A better characterization of these genes will enable fine-tuning of adaptation to various production environments. Two such genes, E1La and E1Lb, have been implicated in flowering by previous studies, but their effects have yet to be assessed under natural photoperiod regimes. RESULTS: Natural and induced variants of E1La and E1Lb were identified and introgressed into lines harboring either E1 or its early flowering variant, e1-as. Lines were evaluated for days to flower and maturity in a Maturity Group (MG) III production environment. These results revealed that variation in E1La and E1Lb promoted earlier flowering and maturity, with stronger effects in e1-as background than in an E1 background. The geographic distribution of E1La alleles among wild and cultivated soybean revealed that natural variation in E1La likely contributed to northern expansion of wild soybean, while breeding programs in North America exploited e1-as to develop cultivars adapted to northern latitudes. CONCLUSION: This research identified novel alleles of the E1 paralogues, E1La and E1Lb, which promote flowering and maturity under natural photoperiods. These loci represent sources of genetic variation which have been under-utilized in North American breeding programs to control reproductive timing, and which can be valuable additions to a breeder's molecular toolbox.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Glycine max/crecimiento & desarrollo , Glycine max/genética , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/genética , Fotoperiodo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Geografía , Fenotipo , Factores de Tiempo
4.
New Phytol ; 229(2): 920-934, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32939760

RESUMEN

Seed weight is one of the most important agronomic traits in soybean for yield improvement and food production. Several quantitative trait loci (QTLs) associated with the trait have been identified in soybean. However, the genes underlying the QTLs and their functions remain largely unknown. Using forward genetic methods and CRISPR/Cas9 gene editing, we identified and characterized the role of GmKIX8-1 in the control of organ size in soybean. GmKIX8-1 belongs to a family of KIX domain-containing proteins that negatively regulate cell proliferation in plants. Consistent with this predicted function, we found that loss-of-function GmKIX8-1 mutants showed a significant increase in the size of aerial plant organs, such as seeds and leaves. Likewise, the increase in organ size is due to increased cell proliferation, rather than cell expansion, and increased expression of CYCLIN D3;1-10. Lastly, molecular analysis of soybean germplasms harboring the qSw17-1 QTL for the big-seeded phenotype indicated that reduced expression of GmKIX8-1 is the genetic basis of the qSw17-1 phenotype.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Tamaño de los Órganos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Glycine max/genética
5.
Plant J ; 103(5): 1937-1958, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32410239

RESUMEN

The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.


Asunto(s)
Bradyrhizobium/metabolismo , Glycine max/microbiología , Metabolómica/métodos , Nódulos de las Raíces de las Plantas/microbiología , Carbono/metabolismo , Mutación/genética , Nitrógeno/metabolismo , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/metabolismo , Glycine max/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Simbiosis
6.
Front Plant Sci ; 11: 612942, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391326

RESUMEN

Raffinose family oligosaccharides (RFOs) are major soluble carbohydrates in soybean seeds that cannot be digested by human and other monogastric animals. Hence, a major goal is to reduce RFO levels to improve the nutritional quality of soybean. In this study, we utilized a dual gRNAs CRISPR/Cas9 system to induce knockouts in two soybean galactinol synthase (GOLS) genes, GmGOLS1A and its homeolog GmGOLS1B. Genotyping of T0 plants showed that the construct design was efficient in inducing various deletions in the target sites or sequences spanning the two target sites of both GmGOLS1A and GmGOLS1B genes. A subset of induced alleles was successfully transferred to progeny and, at the T2 generation, we identified null segregants of single and double mutant genotypes without off-target induced mutations. The seed carbohydrate analysis of double mutant lines showed a reduction in the total RFO content of soybean seed from 64.7 mg/g dry weight to 41.95 mg/g dry weight, a 35.2% decrease. On average, the stachyose content, the most predominant RFO in soybean seeds, decreased by 35.4% in double mutant soybean, while the raffinose content increased by 41.7%. A slight decrease in verbascose content was also observed in mutant lines. Aside from changes in soluble carbohydrate content, some mutant lines also exhibited increased protein and fat contents. Otherwise, no difference in seed weight, seed germination, plant development and morphology was observed in the mutants. Our findings indicate that GmGOLS1A and GmGOLS1B contribute to the soybean oligosaccharide profile through RFO biosynthesis pathways, and are promising targets for future investigation, as well as crop improvement efforts. Our results also demonstrate the potential in using elite soybean cultivars for transformation and targeted genome editing.

7.
BMC Plant Biol ; 19(1): 311, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307375

RESUMEN

BACKGROUND: CRISPR/Cas9 gene editing is now revolutionizing the ability to effectively modify plant genomes in the absence of efficient homologous recombination mechanisms that exist in other organisms. However, soybean is allotetraploid and is commonly viewed as difficult and inefficient to transform. In this study, we demonstrate the utility of CRISPR/Cas9 gene editing in soybean at relatively high efficiency. This was shown by specifically targeting the Fatty Acid Desaturase 2 (GmFAD2) that converts the monounsaturated oleic acid (C18:1) to the polyunsaturated linoleic acid (C18:2), therefore, regulating the content of monounsaturated fats in soybean seeds. RESULTS: We designed two gRNAs to guide Cas9 to simultaneously cleave two sites, spaced 1Kb apart, within the second exons of GmFAD2-1A and GmFAD2-1B. In order to test whether the Cas9 and gRNAs would perform properly in transgenic soybean plants, we first tested the CRISPR construct we developed by transient hairy root transformation using Agrobacterium rhizogenesis strain K599. Once confirmed, we performed stable soybean transformation and characterized ten, randomly selected T0 events. Genotyping of CRISPR/Cas9 T0 transgenic lines detected a variety of mutations including large and small DNA deletions, insertions and inversions in the GmFAD2 genes. We detected CRISPR- edited DNA in all the tested T0 plants and 77.8% of the events transmitted the GmFAD2 mutant alleles to T1 progenies. More importantly, null mutants for both GmFAD2 genes were obtained in 40% of the T0 plants we genotyped. The fatty acid profile analysis of T1 seeds derived from CRISPR-edited plants homozygous for both GmFAD2 genes showed dramatic increases in oleic acid content to over 80%, whereas linoleic acid decreased to 1.3-1.7%. In addition, transgene-free high oleic soybean homozygous genotypes were created as early as the T1 generation. CONCLUSIONS: Overall, our data showed that dual gRNA CRISPR/Cas9 system offers a rapid and highly efficient method to simultaneously edit homeologous soybean genes, which can greatly facilitate breeding and gene discovery in this important crop plant.


Asunto(s)
Ácido Graso Desaturasas/genética , Edición Génica/métodos , Genes de Plantas , Glycine max/genética , ARN Guía de Kinetoplastida , Ácido alfa-Linolénico/genética , Agrobacterium/genética , Sistemas CRISPR-Cas , Marcadores Genéticos , Vectores Genéticos , Técnicas de Genotipaje , Patrón de Herencia , Plantas Modificadas Genéticamente
8.
Plant Physiol ; 172(3): 1506-1518, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27660165

RESUMEN

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar. Using forward genetic methods combined with comparative genome hybridization analysis, we were able to establish that deletion of the GmHGO1 gene is the genetic basis of the brown seeded phenotype exhibited by the MO12 mutant line. GmHGO1 encodes a homogentisate dioxygenase (HGO), which catalyzes the committed enzymatic step in homogentisate catabolism. This report describes to our knowledge the first functional characterization of a plant HGO gene, defects of which are linked to the human genetic disease alkaptonuria. We show that reduced homogentisate catabolism in a soybean HGO mutant is an effective strategy for enhancing the production of lipid-soluble antioxidants such as vitamin E, as well as tolerance to herbicides that target pathways associated with homogentisate metabolism. Furthermore, this work demonstrates the utility of fast neutron mutagenesis in identifying novel genes that contribute to soybean agronomic traits.


Asunto(s)
Biofortificación , Glycine max/enzimología , Homogentisato 1,2-Dioxigenasa/metabolismo , Aceites de Plantas/metabolismo , Semillas/enzimología , Vitamina E/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/genética , Inhibidores Enzimáticos/toxicidad , Eliminación de Gen , Genoma de Planta , Herbicidas/toxicidad , Ácido Homogentísico/metabolismo , Isoenzimas/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mutación/genética , Fenotipo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Glycine max/efectos de los fármacos , Glycine max/fisiología
9.
Plant Genome ; 8(1): eplantgenome2014.10.0077, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33228287

RESUMEN

Soybean seeds contain a large amount of P, which is stored as phytic acid (PA). Phytic acid is indigestible by nonruminant livestock and considered an antinutritional factor in soybean meal. Several low PA soybean lines have been discovered, but many of these lines have either minor reductions in PA or inadequate germination and emergence. The reduced PA phenotype of soybean line Gm-lpa-ZC-2 was previously shown to be the result of a mutation in a gene encoding an inositol pentakisphosphate 2-kinase on chromosome 14 (14IPK1). While the 14IPK1 mutation was shown to have no impact on germination and emergence, the reduction in PA was modest (up to 50%). Our objective was to determine the effect on seed P partitioning for a novel mutation of an independent IPK1 gene on chromosome six (06IPK1) on its own and in combination with mutant alleles of the 14IPK1. We developed soybean populations and conducted genotype and phenotype association analyses based on the genotype of the 06IPK1 and 14IPK1 genes and the seed P partitioning profile. The lines with both mutant IPK1 genes had very low PA levels, moderate accumulation of inorganic phosphate (Pi), and accumulation of high amounts of P in lower inositols. The developed lines did not have significant reductions in germination or field emergence. In addition, characterization of the lower inositols produced in the mutant lines suggests that IPK1 is a polyphosphate kinase and provides some insight into the PA biosynthesis pathway in soybean seeds.

10.
BMC Plant Biol ; 14: 143, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24886084

RESUMEN

BACKGROUND: Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). RESULTS: We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. CONCLUSIONS: Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation.


Asunto(s)
Ácidos Grasos/metabolismo , Eliminación de Gen , Fijación del Nitrógeno , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/anatomía & histología , Semillas/metabolismo , Ácidos Esteáricos/metabolismo , Secuencia de Aminoácidos , Segregación Cromosómica , Cromosomas de las Plantas/genética , Hibridación Genómica Comparativa , Cruzamientos Genéticos , Metanosulfonato de Etilo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios Genéticos , Datos de Secuencia Molecular , Difracción de Neutrones , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Análisis de Secuencia de ADN , Aceite de Soja , Glycine max/genética
11.
Mol Plant ; 7(9): 1455-1469, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24880337

RESUMEN

Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Cadmio/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas de Transporte de Membrana/genética , Especificidad de Órganos , Floema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Semillas/metabolismo
12.
Plant Physiol ; 161(1): 36-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23124322

RESUMEN

Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean.


Asunto(s)
Cromosomas de las Plantas , Genómica/métodos , Glycine max/genética , Mutagénesis Insercional/métodos , Retroelementos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Southern Blotting , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Dosificación de Gen , Hibridación Fluorescente in Situ , Técnicas de Embriogénesis Somática de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glycine max/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformación Genética
13.
Planta ; 237(1): 65-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22983673

RESUMEN

Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Hierro/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/genética , Plantas/genética , Aminoácidos Cíclicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , FMN Reductasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hierro/farmacología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Donantes de Óxido Nítrico/farmacología , Pisum sativum/genética , Pisum sativum/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Nitrosoglutatión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
Plant Physiol ; 156(1): 240-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21321255

RESUMEN

Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max) genome. Approximately 120,000 soybean seeds were exposed to FN radiation doses of up to 32 Gray units to develop over 23,000 independent M2 lines. Here, we demonstrate the utility of this population for phenotypic screening and associated genomic characterization of striking and agronomically important traits. Plant variation was cataloged for seed composition, maturity, morphology, pigmentation, and nodulation traits. Mutants that showed significant increases or decreases in seed protein and oil content across multiple generations and environments were identified. The application of comparative genomic hybridization (CGH) to lesion-induced mutants for deletion mapping was validated on a midoleate x-ray mutant, M23, with a known FAD2-1A (for fatty acid desaturase) gene deletion. Using CGH, a subset of mutants was characterized, revealing deletion regions and candidate genes associated with phenotypes of interest. Exome resequencing and sequencing of PCR products confirmed FN-induced deletions detected by CGH. Beyond characterization of soybean FN mutants, this study demonstrates the utility of CGH, exome sequence capture, and next-generation sequencing approaches for analyses of mutant plant genomes. We present this FN mutant soybean population as a valuable public resource for future genetic screens and functional genomics research.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Genoma de Planta/genética , Genómica , Glycine max/genética , Proteínas de Plantas/genética , Exoma/genética , Neutrones Rápidos , Secuenciación de Nucleótidos de Alto Rendimiento , Semillas/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia
15.
Plant Cell ; 20(2): 471-81, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18263776

RESUMEN

Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu-mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ascomicetos/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Fabaceae/genética , Fabaceae/metabolismo , Fabaceae/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligosacáridos/química , Oligosacáridos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Activación Transcripcional
16.
Plant Physiol ; 146(2): 589-601, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083798

RESUMEN

The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiología , Homeostasis/fisiología , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Metales/metabolismo , Semillas/crecimiento & desarrollo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Mutación , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantones/metabolismo
17.
Planta ; 223(2): 291-305, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16151844

RESUMEN

AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Simportadores/metabolismo , Arabidopsis/embriología , Arabidopsis/crecimiento & desarrollo , Transporte Biológico Activo/fisiología , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/metabolismo , Genes Reporteros , Germinación/fisiología , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos/metabolismo , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/fisiología , Polen/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Reproducción , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Análisis de Secuencia de ADN
18.
Plant Cell ; 14(11): 2799-811, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417702

RESUMEN

A T-DNA-tagged population of Arabidopsis was screened for mutations in AtOPT3, which encodes a member of the oligopeptide (OPT) family of peptide transporters, and a recessive mutant allele, opt3, was identified. Phenotypic analysis of opt3 showed that most homozygous embryos were arrested at or before the octant stage of embryo development and that none showed the usual periclinal division leading to the formation of the protoderm. This defective phenotype could be reversed by complementation with the full-length, wild-type AtOPT3 gene. A beta-glucuronidase (GUS) fusion to DNA sequences upstream of the putative AtOPT3 ATG start codon was constructed, and the expression pattern was assayed in transgenic plants. AtOPT3 was expressed in the vascular tissues of seedlings and mature plants as well as in pollen. Consistent with the function of AtOPT3 in embryogenesis, AtOPT3::GUS expression also was detected in developing embryos and in the maternal tissues of seeds. These data suggest a critical role for peptide transport in early embryo development.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Semillas/crecimiento & desarrollo , Alelos , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Semillas/genética , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...