Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900970

RESUMEN

Antibiotic resistance is an urgent threat to global health, with the decreasing efficacy of conventional drugs underscoring the urgency for innovative therapeutic strategies. Antimicrobial peptides present as promising alternatives to conventional antibiotics. Gramicidin S is one such naturally occurring antimicrobial peptide that is effective against Staphylococcus aureus, with a minimum inhibitory concentration (MIC) of 4 µg/mL (3.6 µM). Despite this potent activity, its significant hemolytic toxicity restricts its clinical use to topical applications. Herein, we present rational modifications to the key ß-strand and ß-turn regions of gramicidin S to concurrently mitigate hemolytic effects, while maintaining potency. Critically, peptide 9 displayed negligible hemolytic toxicity, while possessing significant antibacterial potency against a panel of methicillin-sensitive and methicillin-resistant S. aureus clinical isolates (MIC of 8 µg/mL, 7.2 µM). Given the substantial antibacterial activity and near absence of cytotoxicity, 9 presents as a potential candidate for systemic administration in the treatment of S. aureus bacteremia/sepsis.

2.
Chemistry ; 29(46): e202301487, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37309073

RESUMEN

A novel strategy to treat Staphylococcus aureus (S. aureus) skin infections is presented, where UV light is used to facilitate concomitant light-controlled activation and delivery of an antimicrobial therapeutic agent. Specifically, a new photoswitchable gramicidin S analogue was immobilized onto a polymeric wearable patch via a photocleavable linker that undergoes photolysis at the same wavelength of light required for activation of the peptide. Unlike toxic gramicidin S, the liberated active photoswitchable peptide exhibits antimicrobial activity against S. aureus while being ostensibly non-haemolytic to red blood cells. Moreover, irradiation with visible light switches off the antimicrobial properties of the peptide within seconds, presenting an ideal strategy to regulate antibiotic activity for localized bacterial infections with the potential to mitigate resistance.


Asunto(s)
Antiinfecciosos , Dispositivos Electrónicos Vestibles , Gramicidina/química , Péptidos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Péptidos , Antiinfecciosos/farmacología
3.
ACS Med Chem Lett ; 14(3): 285-290, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923924

RESUMEN

The rise of multidrug-resistant bacteria, such as Staphylococcus aureus, has highlighted global urgency for new classes of antibiotics. Biotin protein ligase (BPL), a critical metabolic regulatory enzyme, is an important target that shows significant promise in this context. Here we report the in silico docking, synthesis, and biological assay of a new series of N1-diphenylmethyl-1,2,3-triazole-based S. aureus BPL (SaBPL) inhibitors (8-19) designed to probe the adenine binding site and define whole-cell activity for this important class of inhibitor. Triazoles 13 and 14 with N1-propylamine and -butanamide substituents, respectively, were particularly potent with K i values of 10 ± 2 and 30 ± 6 nM, respectively, against SaBPL. A strong correlation was apparent between the K i values for 8-19 and the in silico docking, with hydrogen bonding to amino acid residues S128 and N212 of SaBPL likely contributing to potent inhibition.

4.
ACS Infect Dis ; 8(12): 2579-2585, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36399035

RESUMEN

Staphylococcus aureus, a key ESKAPE bacteria, is responsible for most blood-based infections and, as a result, is a major economic healthcare burden requiring urgent attention. Here, we report in silico docking, synthesis, and assay of N1-diphenylmethyl triazole-based analogues (7-13) designed to interact with the entire binding site of S. aureus biotin protein ligase (SaBPL), an enzyme critical for the regulation of gluconeogenesis and fatty acid biosynthesis. The second aryl ring of these compounds enhances both SaBPL potency and whole cell activity against S. aureus relative to previously reported mono-benzyl triazoles. Analogues 12 and 13, with added substituents to better interact with the adenine binding site, are particularly potent, with Ki values of 6.01 ± 1.01 and 8.43 ± 0.73 nM, respectively. These analogues are the most active triazole-based inhibitors reported to date and, importantly, inhibit the growth of a clinical isolate strain of S. aureus ATCC 49775, with minimum inhibitory concentrations of 1 and 8 µg/mL, respectively.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Liasas de Carbono-Nitrógeno , Staphylococcus aureus , Triazoles , Biotina , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Triazoles/química , Triazoles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Liasas de Carbono-Nitrógeno/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores
5.
Phys Med ; 88: 250-261, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34315001

RESUMEN

PURPOSE: The field of online monitoring of the beam range is one of the most researched topics in proton therapy over the last decade. The development of detectors that can be used for beam range verification under clinical conditions is a challenging task. One promising possible solution are modalities that record prompt-gamma radiation produced by the interactions of the proton beam with the target tissue. A good understanding of the energy spectra of the prompt gammas and the yields in certain energy regions is crucial for a successful design of a prompt-gamma detector. Monte-Carlo simulations are an important tool in development and testing of detector concepts, thus the proper modelling of the prompt-gamma emission in those simulations are of vital importance. In this paper, we confront a number of GEANT4 simulations of prompt-gamma emission, performed with different versions of the package and different physics lists, with experimental data obtained from a phantom irradiation with proton beams of four different energies in the range 70-230 MeV. METHODS: The comparison is made on different levels: features of the prompt-gamma energy spectrum, gamma emission depth profiles for discrete transitions and the width of the distal fall-off in those profiles. RESULTS: The best agreement between the measurements and the simulations is found for the GEANT4 version 10.4.2 and the reference physics list QGSP_BIC_HP. CONCLUSIONS: Modifications to prompt-gamma emission modelling in higher versions of the software increase the discrepancy between the simulation results and the experimental data.


Asunto(s)
Terapia de Protones , Rayos gamma , Método de Montecarlo , Fantasmas de Imagen , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...