Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 28(2): 123-138, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34848561

RESUMEN

GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-containing RNA is translated into dipeptide repeat (DPR) proteins, some of which are neurotoxic. Using dynamic ribosome profiling, we identified three translation initiation sites in the intron upstream of (G4C2) repeats; these sites are detected irrespective of the presence or absence of the repeats. During translocation, ribosomes appear to be stalled on the repeats. An AUG in the preceding C9ORF72 exon initiates a uORF that inhibits downstream translation. Polysome isolation indicates that unspliced (G4C2) repeat-containing RNA is a substrate for DPR protein synthesis. (G4C2) repeat-containing RNA translation is 5' cap-independent but inhibited by the initiation factor DAP5, suggesting an interplay with uORF function. These results define novel translational mechanisms of expanded (G4C2) repeat-containing RNA in disease.


Asunto(s)
Proteína C9orf72/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Ribosomas/metabolismo , Proteína C9orf72/metabolismo , Repeticiones de Dinucleótido , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
RNA Biol ; 18(7): 962-971, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32954964

RESUMEN

Noncanonical poly(A) polymerases are frequently tethered to mRNA 3' untranslated regions and regulate poly(A) tail length and resulting translation. In the brain, one such poly(A) polymerase is Gld2, which is anchored to mRNA by the RNA-binding protein CPEB1 to control local translation at postsynaptic regions. Depletion of CPEB1 or Gld2 from the mouse hippocampus results in a deficit in long-term potentiation (LTP), but only depletion of CPEB1 alters animal behaviour. To test whether a related enzyme, Gld4, compensates for the lack of Gld2, we separately or simultaneously depleted both proteins from hippocampal area CA1 and again found little change in animal behaviour, but observed a deficit in LTP as well as an increase in long-term depression (LTD), two forms of protein synthesis-dependent synaptic plasticity. RNA-seq data from Gld2, Gld4, and Gld2/Gld4-depleted hippocampus show widespread changes in steady state RNA levels, alternative splicing, and alternative poly(A) site selection. Many of the RNAs subject to these alterations encode proteins that mediate synaptic function, suggesting a molecular foundation for impaired synaptic plasticity.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/genética , Polinucleotido Adenililtransferasa/genética , Procesamiento Postranscripcional del ARN , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Regiones no Traducidas 3' , Animales , Reacción de Prevención/fisiología , Región CA1 Hipocampal/patología , Regulación de la Expresión Génica , Inyecciones Intraventriculares , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Conducta Obsesiva/genética , Conducta Obsesiva/metabolismo , Conducta Obsesiva/fisiopatología , Polinucleotido Adenililtransferasa/antagonistas & inhibidores , Polinucleotido Adenililtransferasa/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/antagonistas & inhibidores , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
Biol Open ; 8(8)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434643

RESUMEN

RNA-binding proteins (RBPs) function in higher-order assemblages such as RNA granules to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of neuronal Fragile X granules that associate with axonal mRNA and ribosomes in the intact brain. However, the FXR2P domains important for assemblage formation in a cellular system are unknown. Here we used an EGFP insertional mutagenesis approach to probe for FXR2P intrinsic features that influence its structural states. We tested 18 different in-frame FXR2PEGFP fusions in neurons and found that the majority did not impact assemblage formation. However, EGFP insertion within a 23 amino acid region of the low complexity (LC) domain induced FXR2PEGFP assembly into two distinct fibril states that were observed in isolation or in highly-ordered bundles. FXR2PEGFP fibrils exhibited different developmental timelines, ultrastructures and ribosome associations. Formation of both fibril types was dependent on an intact RNA-binding domain. These results suggest that restricted regions of the LC domain, together with the RNA-binding domain, may be important for FXR2P structural state organization in neurons.

4.
Nucleic Acids Res ; 47(5): e25, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30590705

RESUMEN

Dysregulated protein synthesis is a major underlying cause of many neurodevelopmental diseases including fragile X syndrome. In order to capture subtle but biologically significant differences in translation in these disorders, a robust technique is required. One powerful tool to study translational control is ribosome profiling, which is based on deep sequencing of mRNA fragments protected from ribonuclease (RNase) digestion by ribosomes. However, this approach has been mainly applied to rapidly dividing cells where translation is active and large amounts of starting material are readily available. The application of ribosome profiling to low-input brain tissue where translation is modest and gene expression changes between genotypes are expected to be small has not been carefully evaluated. Using hippocampal tissue from wide type and fragile X mental retardation 1 (Fmr1) knockout mice, we show that variable RNase digestion can lead to significant sample batch effects. We also establish GC content and ribosome footprint length as quality control metrics for RNase digestion. We performed RNase titration experiments for low-input samples to identify optimal conditions for this critical step that is often improperly conducted. Our data reveal that optimal RNase digestion is essential to ensure high quality and reproducibility of ribosome profiling for low-input brain tissue.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Ribosomas/genética , Ribosomas/metabolismo , Animales , Secuencia de Bases , Femenino , Síndrome del Cromosoma X Frágil/metabolismo , Secuencia Rica en GC , Masculino , Ratones , Control de Calidad , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(48): E11397-E11405, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373821

RESUMEN

Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA binding protein whose deficiency impacts many brain functions, including differentiation of adult neural stem cells (aNSCs). However, the mechanism by which FMRP influences these processes remains unclear. Here, we performed ribosome profiling and transcriptomic analysis of aNSCs in parallel from wild-type and Fmr1 knockout mice. Our data revealed diverse gene expression changes at both mRNA and translation levels. Many mitosis and neurogenesis genes were dysregulated primarily at the mRNA level, while numerous synaptic genes were mostly dysregulated at the translation level. Translational "buffering", whereby changes in ribosome association with mRNA are compensated by alterations in RNA abundance, was also evident. Knockdown of NECDIN, an FMRP-repressed transcriptional factor, rescued neuronal differentiation. In addition, we discovered that FMRP regulates mitochondrial mRNA expression and energy homeostasis. Thus, FMRP controls diverse transcriptional and posttranscriptional gene expression programs critical for neural differentiation.


Asunto(s)
Células Madre Adultas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , ARN Mensajero/genética , ARN Mitocondrial/genética , Células Madre Adultas/citología , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Humanos , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo
6.
Nucleic Acids Res ; 45(11): 6793-6804, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383716

RESUMEN

Regulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution. We identified hundreds of mRNAs regulated by GLD4, several of which are involved in carbohydrate metabolism including GLUT1, a major glucose transporter. Depletion of GLD4 not only reduced GLUT1 poly(A) tail length, but also GLUT1 protein. GLD4-mediated translational control of GLUT1 mRNA is dependent of an RNA binding protein, CPEB1, and its binding elements in the 3΄ UTR. Through regulating GLUT1 level, GLD4 affects glucose uptake into cells and lactate levels. Moreover, GLD4 depletion impairs glucose deprivation-induced GLUT1 up-regulation. In addition, we found that GLD4 affects glucose-dependent cellular phenotypes such as migration and invasion in glioblastoma cells. Our observations delineate a novel post-transcriptional regulatory network involving carbohydrate metabolism and glucose homeostasis mediated by GLD4.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Poliadenilación , ARN Nucleotidiltransferasas/fisiología , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Citoplasma/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células HEK293 , Homeostasis , Humanos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología
7.
Hum Mol Genet ; 26(1): 192-209, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082376

RESUMEN

Local mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons. Here we use a combination of genetic, quantitative imaging and super-resolution microscopy approaches to show that mature axons in the mammalian brain contain ribosomes, the translational regulator FMRP and a subset of FMRP mRNA targets. This axonal translational machinery is associated with Fragile X granules (FXGs), which are restricted to axons in a stereotyped subset of brain circuits. FXGs and associated axonal translational machinery are present in hippocampus in humans as old as 57 years. This FXG-associated axonal translational machinery is present in adult rats, even when adult neurogenesis is blocked. In contrast, in mouse this machinery is only observed in juvenile hippocampal axons. This differential developmental expression was specific to the hippocampus, as both mice and rats exhibit FXGs in mature axons in the adult olfactory system. Experiments in Fmr1 null mice show that FMRP regulates axonal protein expression but is not required for axonal transport of ribosomes or its target mRNAs. Axonal translational machinery is thus a feature of adult CNS neurons. Regulation of this machinery by FMRP could support complex behaviours in humans throughout life.


Asunto(s)
Axones/patología , Encéfalo/patología , Gránulos Citoplasmáticos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , ARN Mensajero/metabolismo , Ribosomas/patología , Adulto , Animales , Axones/metabolismo , Encéfalo/metabolismo , Gránulos Citoplasmáticos/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
8.
RNA ; 22(10): 1492-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27495319

RESUMEN

Gld2, a noncanonical cytoplasmic poly(A) polymerase, interacts with the RNA binding protein CPEB1 to mediate polyadenylation-induced translation in dendrites of cultured hippocampal neurons. Depletion of Gld2 from the hippocampus leads to a deficit in long-term potentiation evoked by theta burst stimulation. At least in mouse liver and human primary fibroblasts, Gld2 also 3' monoadenylates and thereby stabilizes specific miRNAs, which enhance mRNA translational silencing and eventual destruction. These results suggest that Gld2 would be likely to monoadenylate and stabilize miRNAs in the hippocampus, which would produce measurable changes in animal behavior. We now report that using Gld2 knockout mice, there are detectable alterations in specific miRNA monoadenylation in the hippocampus when compared to wild type, but that these modifications produce no detectable effect on miRNA stability. Moreover, we surprisingly find no overt change in animal behavior when comparing Gld2 knockout to wild-type mice. These data indicate that miRNA monoadenylation-mediated stability is cell type-specific and that monoadenylation has no measurable effect on higher cognitive function.


Asunto(s)
Conducta Animal , Hipocampo/metabolismo , MicroARNs/genética , Polinucleotido Adenililtransferasa/metabolismo , Procesamiento de Término de ARN 3' , Animales , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN
9.
Chem Senses ; 40(5): 345-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25917509

RESUMEN

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and is characterized by cognitive impairments and altered sensory function. It is caused by absence of fragile X mental retardation protein (FMRP), an RNA-binding protein essential for normal synaptic plasticity and function. Animal models have provided important insights into mechanisms through which loss of FMRP impacts cognitive and sensory development and function. While FMRP is highly enriched in the developing and adult olfactory bulb (OB), its role in olfactory sensory function remains poorly understood. Here, we used a mouse model of FXS, the fmr1 (-/y) mouse, to test whether loss of FMRP impacts olfactory discrimination, habituation, or sensitivity using a spontaneous olfactory cross-habituation task at a range of odorant concentrations. We demonstrated that fmr1 (-/y) mice have a significant decrease in olfactory sensitivity compared with wild type controls. When we controlled for differences in sensitivity, we found no effect of loss of FMRP on the ability to habituate to or spontaneously discriminate between odorants. These data indicate that loss of FMRP significantly alters olfactory sensitivity, but not other facets of basal olfactory function. These findings have important implications for future studies aimed at understanding the role of FMRP on sensory functioning.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Odorantes , Vías Olfatorias/metabolismo , Percepción Olfatoria/fisiología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Mol Cell Neurosci ; 62: 42-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25109237

RESUMEN

Fragile X syndrome, the leading cause of inherited intellectual disability and autism, is caused by loss of function of Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein that regulates local protein synthesis in the somatodendritic compartment. However, emerging evidence also indicates important roles for FMRP in axonal and presynaptic functions. In particular, FMRP and its homologue FXR2P localize axonally and presynaptically to discrete endogenous structures in the brain termed Fragile X granules (FXGs). FXR2P is a component of all FXGs and is necessary for the axonal and presynaptic localization of FMRP to these structures. We therefore sought to identify and characterize structural features of FXR2P that regulate its axonal localization. Sequence analysis reveals that FXR2P harbors a consensus N-terminal myristoylation sequence (MGXXXS) that is absent in FMRP. Using click chemistry with wild type and an unmyristoylatable G2A mutant we demonstrate that FXR2P is N-myristoylated on glycine 2, establishing it as a lipid-modified RNA binding protein. To investigate the role of FXR2P N-myristoylation in neurons we generated fluorescently tagged wild type and unmyristoylatable FXR2P (WT and G2A, respectively) and expressed them in primary cortical cultures. Both FXR2P(WT) and FXR2P(G2A) are expressed at equivalent overall levels and are capable of forming FMRP-containing axonal granules. However, FXR2P(WT) granules are largely restricted to proximal axonal segments while granules formed with unmyristoylatable FXR2P(G2A) are localized throughout the axonal arbor, including in growth cones. These studies indicate that N-terminal myristoylation of the RNA binding protein FXR2P regulates its localization within the axonal arbor. Moreover, since FMRP localization within axonal domains requires its association with FXR2P, these findings suggest that FXR2P lipid modification is a control point for the axonal and presynaptic distribution of FMRP.


Asunto(s)
Axones/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Miristatos/metabolismo , Procesamiento Proteico-Postraduccional
11.
J Comp Neurol ; 520(16): 3687-706, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22522693

RESUMEN

Loss of Fragile X mental retardation protein (FMRP) leads to Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism. Although the functions of FMRP and its homologs FXR1P and FXR2P are well studied in the somatodendritic domain, recent evidence suggests that this family of RNA binding proteins also plays a role in the axonal and presynaptic compartments. Fragile X granules (FXGs) are morphologically and genetically defined structures containing Fragile X proteins that are expressed axonally and presynaptically in a subset of circuits. To further understand the role of presynaptic Fragile X proteins in the brain, we systematically mapped the FXG distribution in the mouse central nervous system. This analysis revealed both the circuits and the neuronal types that express FXGs. FXGs are enriched in circuits that mediate sensory processing and motor planning-functions that are particularly perturbed in FXS patients. Analysis of FXG expression in the hippocampus suggests that CA3 pyramidal neurons use presynaptic Fragile X proteins to modulate recurrent but not feedforward processing. Neuron-specific FMRP mutants revealed a requirement for neuronal FMRP in the regulation of FXGs. Finally, conditional FMRP ablation demonstrated that FXGs are expressed in axons of thalamic relay nuclei that innervate cortex, but not in axons of thalamic reticular nuclei, striatal nuclei, or cortical neurons that innervate thalamus. Together, these findings support the proposal that dysregulation of axonal and presynaptic Fragile X proteins contribute to the neurological symptoms of FXS.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiopatología , Gránulos Citoplasmáticos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Terminales Presinápticos/metabolismo , Animales , Western Blotting , Encéfalo/patología , Síndrome del Cromosoma X Frágil/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Toxicology ; 283(1): 1-7, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21277931

RESUMEN

General anaesthetics are proposed to cause unconsciousness by modulating neuronal excitability in the mammalian brain through mechanisms that include enhancement of inhibitory GABA(A) receptor currents and suppression of excitatory glutamate receptor responses. Both intravenous and volatile agents may produce neurotoxic effects during early postnatal rodent brain development through similar mechanisms. In the following study, we investigated anaesthetic cytotoxicity in primary cortical neurones and glia from postnatal day 2-8 mice. Cultures at 4-20 days in vitro were exposed to combinations of ketamine (100 µM to 3 mM), nitrous oxide (75%, v/v) and/or isoflurane (1.5-5%, v/v) for 6-12 h. Neuronal survival and cell death were measured via microtubule associated protein 2 immunoassay and lactate dehydrogenase release assays, respectively. Clinically relevant anaesthetic concentrations of ketamine, nitrous oxide and isoflurane had no significant neurotoxic effects individually or when given as anaesthetic cocktails, even with up to 12 h exposure. This lack of neurotoxicity was observed regardless of whether cultures were prepared from postnatal day 0-2 or day 8 mice, and was also unaffected by number of days in vitro (DIV 4-20). Significant neurotoxic effects were only observed at supraclinical concentrations (e.g. 1-3 mM ketamine). Our study suggests that neurotoxicity previously reported in vivo is not due to direct cytotoxicity of anaesthetic agents, but results from other impacts of the anaesthetised state during early brain development.


Asunto(s)
Anestésicos Generales/toxicidad , Corteza Cerebral/efectos de los fármacos , Isoflurano/toxicidad , Ketamina/toxicidad , Neuronas/efectos de los fármacos , Óxido Nitroso/toxicidad , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , N-Metilaspartato/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...