Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(14): 9992-10009, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37462530

RESUMEN

The serotonin 5-HT2A receptor (5-HT2AR) and 5-HT2CR localize to the brain and share overlapping signal transduction facets that contribute to their roles in cognition, mood, learning, and memory. Achieving selective targeting of these receptors is challenged by the similarity in their 5-HT orthosteric binding pockets. A fragment-based discovery approach was employed to design and synthesize novel oleamide analogues as selective 5-HT2CR or dual 5-HT2CR/5-HT2AR positive allosteric modulators (PAMs). Compound 13 (JPC0323) exhibited on-target properties, acceptable plasma exposure and brain penetration, as well as negligible displacement to orthosteric sites of ∼50 GPCRs and transporters. Furthermore, compound 13 suppressed novelty-induced locomotor activity in a 5-HT2CR-dependent manner, suggesting 5-HT2CR PAM, but not 5-HT2AR, activity at the level of the whole organism at the employed doses of 13. We discovered new selective 5-HT2CR PAMs and first-in-class 5-HT2CR/5-HT2AR dual PAMs that broaden the pharmacological toolbox to explore the biology of these vital receptors.


Asunto(s)
Receptor de Serotonina 5-HT2A , Serotonina , Serotonina/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Encéfalo/metabolismo
2.
Biochem Pharmacol ; 168: 204-213, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295463

RESUMEN

Impulsivity is a multifaceted behavioral manifestation with implications in several neuropsychiatric disorders. Glutamate neurotransmission through the N-methyl-D-aspartate receptors (NMDARs) in the medial prefrontal cortex (mPFC), an important brain region in decision-making and goal-directed behaviors, plays a key role in motor impulsivity. We discovered that inherent motor impulsivity predicted responsiveness to D-cycloserine (DCS), a partial NMDAR agonist, which prompted the hypothesis that inherent motor impulsivity is associated with the pattern of expression of cortical NMDAR subunits (GluN1, GluN2A, GluN2B), specifically the protein levels and synaptosomal trafficking of the NMDAR subunits. Outbred male Sprague-Dawley rats were identified as high (HI) or low (LI) impulsive using the one-choice serial reaction time task. Following phenotypic identification, mPFC synaptosomal protein was extracted from HI and LI rats to assess the expression pattern of the NMDAR subunits. Synaptosomal trafficking and stabilization for the GluN2 subunits were investigated by co-immunoprecipitation for postsynaptic density 95 (PSD95) and synapse associated protein 102 (SAP102). HI rats had lower mPFC GluN1 and GluN2A, but higher GluN2B and pGluN2B synaptosomal protein expression versus LI rats. Further, higher GluN2B:PSD95 and GluN2B:SAP102 protein:protein interactions were detected in HI versus LI rats. Thus, the mPFC NMDAR subunit expression pattern and/or synaptosomal trafficking associates with high inherent motor impulsivity. Increased understanding of the complex regulation of NMDAR balance within the mPFC as it relates to inherent motor impulsivity may lead to a better understanding of risk factors for impulse-control disorders.


Asunto(s)
Conducta Impulsiva/fisiología , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cicloserina/farmacología , Homólogo 4 de la Proteína Discs Large/metabolismo , Masculino , Neuropéptidos/metabolismo , Fenotipo , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas
3.
J Immunol ; 201(9): 2753-2766, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275049

RESUMEN

High mobility group box 1 (HMGB1) is a multifunctional nuclear protein that translocates to the cytoplasm and is subsequently released to the extracellular space during infection and injury. Once released, it acts as a damage-associated molecular pattern and regulates immune and inflammatory responses. Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants and elderly, for which no effective treatment or vaccine is currently available. This study investigated the effects of HMGB1 on cytokine secretion, as well as the involvement of NF-κB and TLR4 pathways in RSV-induced HMGB1 release in human airway epithelial cells (AECs) and its proinflammatory effects on several human primary immune cells. Purified HMGB1 was incubated with AECs (A549 and small alveolar epithelial cells) and various immune cells and measured the release of proinflammatory mediators and the activation of NF-κB and P38 MAPK. HMGB1 treatment significantly increased the phosphorylation of NF-κB and P38 MAPK but did not induce the release of cytokines/chemokines from AECs. However, addition of HMGB1 to immune cells did significantly induce the release of cytokines/chemokines and activated the NF-κB and P38 MAPK pathways. We found that activation of NF-κB accounted for RSV-induced HMGB1 secretion in AECs in a TLR4-dependent manner. These results indicated that HMGB1 secreted from AECs can facilitate the secretion of proinflammatory mediators from immune cells in a paracrine mechanism, thus promoting the inflammatory response that contributes to RSV pathogenesis. Therefore, blocking the proinflammatory function of HMGB1 may be an effective approach for developing novel therapeutics.


Asunto(s)
Proteína HMGB1/inmunología , Leucocitos Mononucleares/inmunología , Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Humanos , Inmunidad Innata/inmunología , Virus Sincitial Respiratorio Humano/inmunología
4.
J Proteome Res ; 16(8): 2663-2679, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28679203

RESUMEN

Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.


Asunto(s)
Citocinas/farmacología , Eosinófilos/efectos de los fármacos , Fosfoproteínas/análisis , Proteínas/análisis , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Asma/sangre , Células Cultivadas , Citocinas/metabolismo , Electroforesis en Gel Bidimensional , Eosinófilos/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Interleucina-3/farmacología , Interleucina-5/farmacología , Lectinas Tipo C/análisis , Masculino , Proteómica/métodos , Espectrometría de Masas en Tándem , Factores de Tiempo
5.
Mol Imaging ; 10(1): 43-55, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21303614

RESUMEN

Mass transport of drug delivery vehicles is guided by particle properties, such as size, shape, composition, and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two-dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light variable chain, fibrinogen, and complement component 1 compared to their anionic counterparts. Anionic microparticles were found to accumulate in equal abundance in murine liver and spleen, whereas cationic microparticles showed preferential accumulation in the spleen. Immunohistochemistry supported macrophage uptake of both anionic and cationic microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.


Asunto(s)
Portadores de Fármacos/metabolismo , Proteínas Opsoninas/sangre , Silicio/química , Animales , Portadores de Fármacos/química , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Ratones , Porosidad
6.
Proteomics Clin Appl ; 3(10): 1151-1173, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21048890

RESUMEN

Eosinophils are granular leukocytes that have significant roles in many inflammatory and immunoregulatory responses, especially asthma and allergic diseases. We have undertaken a fairly comprehensive proteomic analysis of purified peripheral blood eosinophils from normal human donors primarily employing 2-dimensional gel electrophoresis with protein spot identification by matrix-assisted laser desorption/ionization mass spectrometry. Protein subfractionation methods employed included isoelectric focusing (Zoom(®) Fractionator) and subcellular fractionation using differential protein solubilization. We have identified 3,141 proteins which had Mascot expectation scores of 10(-3) or less. Of these 426 were unique and non-redundant of which 231 were novel proteins not previously reported to occur in eosinophils. Ingenuity Pathway Analysis showed that some 70% of the non-redundant proteins could be subdivided into categories that are clearly related to currently known eosinophil biological activities. Cytoskeletal and associated proteins predominated among the proteins identified. Extensive protein posttranslational modifications were evident, many of which have not been previously reported that reflected the dynamic character of the eosinophil. This dataset of eosinophilic proteins will prove valuable in comparative studies of disease versus normal states and for studies of gender differences and polymorphic variation among individuals.

7.
J Immunol ; 180(6): 4256-64, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18322238

RESUMEN

The differential usage of signaling pathways by chemokines and cytokines in eosinophils is largely unresolved. In this study, we investigate signaling similarities and differences between CCL11 (eotaxin) and IL-5 in a phosphosite screen of human eosinophils. We confirm many previously known pathways of cytokine and chemokine signaling and elucidate novel phosphoregulation in eosinophils. The signaling molecules that were stimulated by both agents were members of the ERK1/2 and p38 MAPK pathways and their downstream effectors such as RSK and MSK1/2. Both agents inhibited S6 kinase, protein kinase Cepsilon, and glycogen synthase kinase 3 alpha and beta. The molecules that were differentially regulated include STATs and protein kinase R (PKR). One of the chief findings in this investigation was that PKR and eukaryotic initiation factor 2alpha are phosphorylated under basal conditions in eosinophils and neutrophils. This basal phosphorylation was linked to autocrine secretion of TGF-beta in eosinophils. TGF-beta directly activates PKR in eosinophils. Basal phosphorylation of PKR was inhibited by incubation of eosinophils with a neutralizing anti-TGF-beta Ab suggesting its physiological importance. We show that inhibition of PKR activity prolongs eosinophil survival. The eosinophil survival factor IL-5 strongly suppresses phosphorylation of PKR. The biological relevance of IL-5 inhibition of phospho-PKR was established by the observation that ex vivo bone marrow-derived eosinophils from OVA-immunized mice had no PKR phosphorylation in contrast to the high level of phosphorylation in sham-immunized mice. Together, our findings suggest that survival of eosinophils is in part controlled by basal activation of PKR through autocrine TGF-beta and that this could be modulated by a Th2 microenvironment in vivo.


Asunto(s)
Eosinófilos/citología , Eosinófilos/enzimología , Fosfoproteínas/metabolismo , Factor de Crecimiento Transformador beta/fisiología , eIF-2 Quinasa/metabolismo , Animales , Especificidad de Anticuerpos , Comunicación Autocrina/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/metabolismo , Supervivencia Celular/inmunología , Células Cultivadas , Quimiocina CCL11/fisiología , Activación Enzimática , Eosinófilos/metabolismo , Femenino , Humanos , Interleucina-5/fisiología , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/sangre , Fosfoproteínas/inmunología , Fosforilación , Transducción de Señal/inmunología , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/inmunología , eIF-2 Quinasa/fisiología
8.
J Exp Med ; 204(7): 1637-52, 2007 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-17576778

RESUMEN

We demonstrate that mitogen-activated protein kinase-activated kinase-2 (MK2) is essential for localized Th2-type inflammation and development of experimental asthma. MK2 deficiency does not affect systemic Th2 immunity, but reduces endothelial permeability, as well as adhesion molecule and chemokine expression. NF-kappaB regulates transcription of adhesion molecules and chemokines. We show that MK2 and its substrate HSP27 are essential for sustained NF-kappaB activation. MK2 and HSP27 prevent nuclear retention of p38 by sequestering it in the cytosol. As a result, MK2 precludes excessive phosphorylation of MSK1. By reducing MSK1 activity, MK2 prevents p65 NF-kappaB hyperphosphorylation and excessive IkappaBalpha transcription. IkappaBalpha mediates nuclear export of p65. By reducing IkappaBalpha level, MK2 prevents premature export of NF-kappaB from the nucleus. Thus, the MK2-HSP27 pathway regulates the NF-kappaB transcriptional output by switching the activation pattern from high level, but short lasting, to moderate-level, but long lasting. This pattern of activation is essential for many NF-kappaB-regulated genes and development of inflammation. Thus, the MK2-HSP27 pathway is an excellent target for therapeutic control of localized inflammatory diseases.


Asunto(s)
Permeabilidad Capilar/fisiología , Inflamación/fisiopatología , FN-kappa B/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Enfermedades Respiratorias/fisiopatología , Traslado Adoptivo , Animales , Quimiotaxis de Leucocito , Endotelio Vascular/fisiología , Retroalimentación , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Enfermedades Respiratorias/inmunología , Linfocitos T/inmunología , Transcripción Genética , Transfección , Venas Umbilicales/fisiología
9.
J Biol Chem ; 281(20): 14429-39, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16556602

RESUMEN

Through the yeast two-hybrid screen we have identified dynamin-2 as a molecule that interacts with the alpha subunit of the interleukin (IL) 5 receptor. Dynamin-2 is a GTPase that is critical for endocytosis. We have shown that dynamin-2 interacts with the IL-5 receptor-associated tyrosine kinases, Lyn and JAK2, in eosinophils. Tyrosine phosphorylation of dynamin is markedly enhanced upon IL-5 stimulation. The inhibition of tyrosine kinases results in complete abolition of ligand-induced receptor endocytosis. Inhibition of dynamin by a dominant-negative mutant or by small interfering RNA results in enhancement of IL-5-stimulated ERK1/2 signaling and cell proliferation. In contrast, the absence of a functional dynamin does not affect STAT5 or AKT phosphorylation or cell survival. Thus, we have identified specific functions for dynamin in the IL-5 signaling pathway and demonstrated its role in receptor endocytosis and termination of the ERK1/2 signaling pathway.


Asunto(s)
Dinamina II/metabolismo , Regulación de la Expresión Génica , Interleucina-5/biosíntesis , Transducción de Señal , Proliferación Celular , Supervivencia Celular , Dinamina II/química , Endocitosis , Humanos , Interleucina-5/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Tirosina/química
10.
J Exp Med ; 199(3): 369-79, 2004 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-14757743

RESUMEN

The first step in T cell receptor for antigen (TCR) signaling is the activation of the receptor-bound Src kinases, Lck and Fyn. The exact mechanism of this process is unknown. Here, we report that the novel Src homology (SH) 3/SH2 ligand-Uncoordinated 119 (Unc119) associates with CD3 and CD4, and activates Lck and Fyn. Unc119 overexpression increases Lck/Fyn activity in T cells. In Unc119-deficient T cells, Lck/Fyn activity is dramatically reduced with concomitant decrease in interleukin 2 production and cellular proliferation. Reconstitution of cells with Unc119 reverses the signaling and functional outcome. Thus, Unc119 is a receptor-associated activator of Src-type kinases. It provides a novel mechanism of signal generation in the TCR complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Proteínas Portadoras/genética , Clonación Molecular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células Jurkat , Ratones , Proteínas de Microtúbulos , Proteínas Recombinantes/inmunología , Transducción de Señal/inmunología , Dominios Homologos src
11.
J Biol Chem ; 278(10): 8837-45, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12496276

RESUMEN

Lyn, an Src-type tyrosine kinase, is associated with the interleukin (IL)-5 receptor in eosinophils. The mechanism of its activation is unknown. Through yeast two-hybrid screening we have cloned and characterized a new signaling molecule, Unc119, that associates with IL-5Ralpha and Src family tyrosine kinases. Unc119 induces the catalytic activity of these kinases through interaction with Src homology 2 and 3 domains. IL-5 stimulation of eosinophils increases Unc119 association with Lyn and induces its catalytic activity. Lyn is important for eosinophil survival. Eosinophils that are transduced with Unc119 have increased Lyn activity and demonstrate prolonged survival in the absence of IL-5. Inhibition of Unc119 down-regulates eosinophil survival. To our knowledge Unc119 is the first receptor-associated activator of Src family tyrosine kinases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas del Helminto/fisiología , Proteínas del Tejido Nervioso/fisiología , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Activación Enzimática , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Receptores de Interleucina/metabolismo , Receptores de Interleucina/fisiología , Receptores de Interleucina-5 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA