Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(38): e202400158, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38619533

RESUMEN

Carbon dots (C-dots) obtained from D-glucose have attracted great interest because of their properties and as a model for understanding the synthesis process and the origin of photoluminescence in carbon-based nanostructures. Synthesising C-dots under hydrothermal conditions has become one of the most common methods for their preparation. Understanding the details of this process is quite difficult. To tackle this challenge, we have adopted a multi-technique approach in our present work. We have correlated different spectroscopic analyses, such as infrared, Raman, fluorescence, NMR, and UV-Vis, to connect the emissions with specific chemical groups. In particular, in situ infrared analysis as a function of temperature has allowed following the formation of C=C, C=O, and COOH species and the rise of specific emissions. Only weak emissions due to n-π* transitions are detected upon post-synthesis thermal annealing.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132987

RESUMEN

The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA