Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 766602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069622

RESUMEN

Waxes are critical in limiting non-stomatal water loss in higher terrestrial plants by making up the limiting barrier for water diffusion across cuticles. Using a differential extraction protocol, we investigated the influence of various wax fractions on the cuticular transpiration barrier. Triterpenoids (TRPs) and very long-chain aliphatics (VLCAs) were selectively extracted from isolated adaxial leaf cuticles using methanol (MeOH) followed by chloroform (TCM). The water permeabilities of the native and the solvent-treated cuticles were measured gravimetrically. Seven plant species (Camellia sinensis, Ficus elastica, Hedera helix, Ilex aquifolium, Nerium oleander, Vinca minor, and Zamioculcas zamiifolia) with highly varying wax compositions ranging from nearly pure VLCA- to TRP-dominated waxes were selected. After TRP removal with MeOH, water permeability did not or only slightly increase. The subsequent VLCA extraction with TCM led to increases in cuticular water permeabilities by up to two orders of magnitude. These effects were consistent across all species investigated, providing direct evidence that the cuticular transpiration barrier is mainly composed of VLCA. In contrast, TRPs play no or only a minor role in controlling water loss.

2.
Plant Physiol Biochem ; 158: 434-445, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33257229

RESUMEN

Barrier properties of the hydrophobic plant cuticle depend on its physicochemical composition. The cuticular compounds vary considerably among plant species but also among organs and tissues of the same plant and throughout developmental stages. As yet, these intraspecific modifications at the cuticular wax and cutin level are only rarely examined. Attempting to further elucidate cuticle profiles, we analysed the adaxial and abaxial surfaces of the sclerophyllous leaf and three developmental stages of the drupe fruit of Prunus laurocerasus, an evergreen model plant native to temperate regions. According to gas chromatographic analyses, the cuticular waxes contained primarily pentacyclic triterpenoids dominated by ursolic acid, whereas the cutin biopolyester mainly consisted of 9/10,ω-dihydroxy hexadecanoic acid. Distinct organ- and side-specific patterns were found for cuticular lipid loads, compositions and carbon chain length distributions. Compositional variations led to different structural and functional barrier properties of the plant cuticle, which were investigated further microscopically, infrared spectroscopically and gravimetrically. The minimum water conductance was highlighted at 1 × 10-5 m s-1 for the perennial, hypostomatous P. laurocerasus leaf and at 8 × 10-5 m s-1 for the few-month-living, stomatous fruit suggesting organ-specific cuticular barrier demands.


Asunto(s)
Frutas/química , Epidermis de la Planta/química , Hojas de la Planta/química , Prunus/química , Ceras/química , Lípidos de la Membrana/química , Triterpenos/química , Agua
4.
Ann Bot ; 126(1): 141-162, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32222770

RESUMEN

BACKGROUND AND AIMS: The cuticle of a limited number of plant species contains cutan, a chemically highly resistant biopolymer. As yet, the biosynthesis of cutan is not fully understood. Attempting to further unravel the origin of cutan, we analysed the chemical composition of enzymatically isolated cuticular membranes of Agave americana leaves. METHODS: Cuticular waxes were extracted with organic solvents. Subsequently, the dewaxed cuticular membrane was depolymerized by acid-catalysed transesterification yielding cutin monomers and cutan, a non-hydrolysable, cuticular membrane residue. The cutan matrix was analysed by thermal extraction, flash pyrolysis and thermally assisted hydrolysis and methylation to elucidate the monomeric composition and deduce a putative biosynthetic origin. KEY RESULTS: According to gas chromatography-mass spectrometry analyses, the cuticular waxes of A. americana contained primarily very-long-chain alkanoic acids and primary alkanols dominated by C32, whereas the cutin biopolyester of A. americana mainly consisted of 9,10-epoxy ω-hydroxy and 9,10,ω-trihydroxy C18 alkanoic acids. The main aliphatic cutan monomers were alkanoic acids, primary alkanols, ω-hydroxy alkanoic acids and alkane-α,ω-diols ranging predominantly from C28 to C34 and maximizing at C32. Minor contributions of benzene-1,3,5-triol and derivatives suggested that these aromatic moieties form the polymeric core of cutan, to which the aliphatic moieties are linked via ester and possibly ether bonds. CONCLUSIONS: High similarity of aliphatic moieties in the cutan and the cuticular wax component indicated a common biosynthetic origin. In order to exclude species-specific peculiarities of A. americana and to place our results in a broader context, cuticular waxes, cutin and cutan of Clivia miniata, Ficus elastica and Prunus laurocerasus leaves were also investigated. A detailed comparison showed compositional and structural differences, indicated that cutan was only found in leaves of perennial evergreen A. americana and C. miniata, and made clear that the phenomenon of cutan is possibly less present in plant species than suggested in the literature.


Asunto(s)
Lípidos de la Membrana , Ceras , Ésteres , Hojas de la Planta
5.
Pest Manag Sci ; 75(12): 3405-3412, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31436379

RESUMEN

BACKGROUND: The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied the permeability of isolated leaf cuticular membranes from Garcinia xanthochymus and Prunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. RESULTS: The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus. We show that treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. CONCLUSION: The VLCA wax fraction makes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Garcinia/fisiología , Compuestos Orgánicos/química , Hojas de la Planta/fisiología , Prunus/fisiología , Ceras/química , Transporte Biológico , Difusión , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...