Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Clin Genet ; 105(4): 406-414, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38214412

RESUMEN

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Asunto(s)
Colágeno Tipo IV , Nefritis Hereditaria , Humanos , Mutación , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefritis Hereditaria/diagnóstico , Hematuria/genética , Proteinuria/genética
2.
Eur J Hum Genet ; 31(6): 674-680, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922632

RESUMEN

Individuals with congenital anomalies of the kidney and urinary tract (CAKUT) show a broad spectrum of malformations. CAKUT can occur in an isolated fashion or as part of a syndromic disorder and can lead to end-stage kidney failure. A monogenic cause can be identified in ~12% of affected individuals. This study investigated a single-center CAKUT cohort analyzed by exome sequencing (ES). Emphasis was placed on the question whether diagnostic yield differs between certain CAKUT phenotypes (e.g., bilateral kidney affection, unilateral kidney affection or only urinary tract affection). 86 unrelated individuals with CAKUT were categorized according to their phenotype and analyzed by ES to identify a monogenic cause. Prioritized variants were rated according to the recommendations of the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science. Diagnostic yields of different phenotypic categories were compared. Clinical data were collected using a standardized questionnaire. In the study cohort, 7/86 individuals had a (likely) pathogenic variant in the genes PAX2, PBX1, EYA1, or SALL1. Additionally, in one individual, a 17q12 deletion syndrome (including HNF1B) was detected. 64 individuals had a kidney affection, which was bilateral in 36. All solved cases (8/86, 9%) had bilateral kidney affection (diagnostic yield in subcohort: 8/36, 22%). Although the diagnostic yield in CAKUT cohorts is low, our single-center experience argues, that, in individuals with bilateral kidney affection, monogenic burden is higher than in those with unilateral kidney or only urinary tract affection.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Humanos , Secuenciación del Exoma , Riñón/anomalías , Sistema Urinario/anomalías , Reflujo Vesicoureteral/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología
3.
Pediatr Nephrol ; 38(5): 1499-1511, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36315273

RESUMEN

BACKGROUND: The aim of the current PodoNet registry analysis was to evaluate the outcome of steroid-resistant nephrotic syndrome (SRNS) in children who were not treated with intensified immunosuppression (IIS), focusing on the potential for spontaneous remission and the role of angiotensin blockade on proteinuria reduction. METHODS: Ninety-five pediatric patients who did not receive any IIS were identified in the PodoNet Registry. Competing risk analyses were performed on 67 patients with nephrotic-range proteinuria at disease onset to explore the cumulative rates of complete or partial remission or progression to kidney failure, stratified by underlying etiology (genetic vs. non-genetic SRNS). In addition, Cox proportional hazard analysis was performed to identify factors predicting proteinuria remission. RESULTS: Eighteen of 31 (58.1%) patients with non-genetic SRNS achieved complete remission without IIS, with a cumulative likelihood of 46.2% at 1 year and 57.7% at 2 years. Remission was sustained in 11 children, and only two progressed to kidney failure. In the genetic subgroup (n = 27), complete resolution of proteinuria occurred very rarely and was never sustained; 6 (21.7%) children progressed to kidney failure at 3 years. Almost all children (96.8%) received proteinuria-lowering renin-angiotensin-aldosterone system (RAAS) antagonist treatment. On antiproteinuric treatment, partial remission was achieved in 7 of 31 (22.6%) children with non-genetic SRNS and 9 of 27 children (33.3%) with genetic SRNS. CONCLUSION: Our results demonstrate that spontaneous complete remission can occur in a substantial fraction of children with non-genetic SRNS and milder clinical phenotype. RAAS blockade increases the likelihood of partial remission of proteinuria in all forms of SRNS. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Síndrome Nefrótico , Insuficiencia Renal , Niño , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Inmunosupresores/uso terapéutico , Proteinuria/tratamiento farmacológico , Proteinuria/etiología , Terapia de Inmunosupresión , Insuficiencia Renal/tratamiento farmacológico , Resistencia a Medicamentos
4.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36185583

RESUMEN

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

5.
Front Med (Lausanne) ; 9: 957733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117978

RESUMEN

Disease-causing variants in COL4A3-5 are associated with type-IV-collagen-related nephropathy, a genetically and phenotypically multifaceted disorder comprising Alport syndrome (AS) and thin basement membrane nephropathy (TBMN) and autosomal, X-linked and a proposed digenic inheritance. Initial symptoms of individuals with AS are microscopic hematuria followed by proteinuria leading to kidney failure (90% on dialysis < age 40 years). In contrast, individuals with TBMN, an outdated histology-derived term, present with microscopic hematuria, only some of them develop kidney failure (>50 years of age). An early diagnosis of type-IV-collagen-related nephropathy is essential for optimized therapy and slowing of the disease. Sixty index cases, in whom exome sequencing had been performed and with disease-causing variant(s) in COL4A3-5, were evaluated concerning their clinical tentative diagnosis and their genotype. Of 60 reevaluated individuals with type-IV-collagen-related nephropathy, 72% had AS, 23% TBMN and 5% focal segmental glomerulosclerosis (FSGS) as clinical tentative diagnosis. The FSGS cases had to be re-classified as having type-IV-collagen-related nephropathy. Twelve percent of cases had AS as clinical tentative diagnosis and a monoallelic disease-causing variant in COL4A3/4 but could not be classified as autosomal dominant AS because of limited or conflicting clinical data. This study illustrates the complex clinical and genetic picture of individuals with a type IV-collagen-related nephropathy indicating the need of a refined nomenclature and the more interdisciplinary teamwork of clinicians and geneticists as the key to optimized patient care.

6.
Nephrol Dial Transplant ; 37(10): 1833-1843, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34473308

RESUMEN

BACKGROUND: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidneys, may also represent monogenic causes of CAKUT. METHODS: We here performed whole-exome sequencing (WES) in 541 families with CAKUT and generated four lists of CAKUT candidate genes: (A) 36 FOX genes showing high expression during renal development, (B) 4 FOX genes known to cause CAKUT to validate list A, (C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families and (D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. RESULTS: To prioritize potential novel CAKUT candidates in the FOX gene family, we overlapped 36 FOX genes (list A) with lists C and D of WES-derived CAKUT candidates. Intersection with list C identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. CONCLUSIONS: We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Proteína Forkhead Box L2/genética , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Humanos , Riñón/anomalías , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral , Secuenciación del Exoma
7.
Nephrol Ther ; 16(7): 420-423, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33162364

RESUMEN

AIM: Aim of the study was to determine if carotid intima media thickness in children with idiopathic nephrotic syndrome is greater than in healthy subjects, and to assess whether carotid intima media thickness in children with nephrotic syndrome is associated with clinical (including disease duration, cumulative dose of steroids, number of relapses) and biochemical parameters. METHODS: A cross-sectional study included 40 patients with nephrotic syndrome (mean age 11.7±4.7 years). Steroid dependent nephrotic syndrome was established in 32 patients (80%), while 8 (20%) had steroid resistant nephrotic syndrome. Control group consisted of 20 age and gender matched healthy children. Blood pressure based on 24-h ambulatory blood pressure monitoring (ABPM), carotid intima media thickness, fasting glucose, insulin, HbA1c, lipid concentrations were measured in all children. RESULTS: A significant difference was detected in carotid intima media thickness values (P=0.036). Children with nephrotic syndrome had significantly greater carotid intima media thickness compared with healthy children (0.42±0.06 and 0.38±0.03mm). Carotid intima-media thickness was positively associated with duration of nephrotic syndrome (r=0.45; P=0.004), body mass index (r=0.48; P=0.002), daytime systolic blood pressure (r=0.46; P=0.003) and night-time systolic blood pressure (r=0.52; P=0.001). Multiple linear regression showed that duration of nephrotic syndrome was the only independent predictor of carotid intima media thickness in children with nephrotic syndrome (R2=0.244; ß=0.327; P=0.037). CONCLUSION: The findings of the present study suggest subclinical vascular damage in patients with nephrotic syndrome. Duration of nephrotic syndrome was the only independent predictor of carotid intima media thickness.


Asunto(s)
Grosor Intima-Media Carotídeo , Síndrome Nefrótico/complicaciones , Presión Sanguínea , Índice de Masa Corporal , Estudios de Casos y Controles , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Sístole
8.
Am J Kidney Dis ; 76(4): 460-470, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32359821

RESUMEN

RATIONALE & OBJECTIVE: Hereditary nephropathies are clinically and genetically heterogeneous disorders. For some patients, the clinical phenotype corresponds to a specific hereditary disease but genetic testing reveals that the expected genotype is not present (phenocopy). The aim of this study was to evaluate the spectrum and frequency of phenocopies identified by using exome sequencing in a cohort of patients who were clinically suspected to have hereditary kidney disorders. STUDY DESIGN: Cross-sectional cohort study. SETTING & PARTICIPANTS: 174 unrelated patients were recruited for exome sequencing and categorized into 7 disease groups according to their clinical presentation. They included autosomal dominant tubulointerstitial kidney disease, Alport syndrome, congenital anomalies of the kidney and urinary tract, ciliopathy, focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome, VACTERL association, and "other." RESULTS: A genetic diagnosis (either likely pathogenic or pathogenic variant according to the guidelines of the American College of Medical Genetics) was established using exome sequencing in 52 of 174 (30%) cases. A phenocopy was identified for 10 of the 52 exome sequencing-solved cases (19%), representing 6% of the total cohort. The most frequent phenocopies (n=5) were associated with genetic Alport syndrome presenting clinically as focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome. Strictly targeted gene panels (<25 kilobases) did not identify any of the phenocopy cases. LIMITATIONS: The spectrum of described phenocopies is small. Selection bias may have altered the diagnostic yield within disease groups in our study population. The study cohort was predominantly of non-Finnish European descent, limiting generalizability. Certain hereditary kidney diseases cannot be diagnosed by using exome sequencing (eg, MUC1-autosomal dominant tubulointerstitial kidney disease). CONCLUSIONS: Phenocopies led to the recategorization of disease and altered clinical management. This study highlights that exome sequencing can detect otherwise occult genetic heterogeneity of kidney diseases.


Asunto(s)
Secuenciación del Exoma , Enfermedades Renales/genética , Fenotipo , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Hum Genet ; 138(10): 1105-1115, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31230195

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease (~ 45%) that manifests before 30 years of age. The genetic locus containing COL4A1 (13q33-34) has been implicated in vesicoureteral reflux (VUR), but mutations in COL4A1 have not been reported in CAKUT. We hypothesized that COL4A1 mutations cause CAKUT in humans. We performed whole exome sequencing (WES) in 550 families with CAKUT. As negative control cohorts we used WES sequencing data from patients with nephronophthisis (NPHP) with no genetic cause identified (n = 257) and with nephrotic syndrome (NS) due to monogenic causes (n = 100). We identified a not previously reported heterozygous missense variant in COL4A1 in three siblings with isolated VUR. When examining 549 families with CAKUT, we identified nine additional different heterozygous missense mutations in COL4A1 in 11 individuals from 11 unrelated families with CAKUT, while no COL4A1 mutations were identified in a control cohort with NPHP and only one in the cohort with NS. Most individuals (12/14) had isolated CAKUT with no extrarenal features. The predominant phenotype was VUR (9/14). There were no clinical features of the COL4A1-related disorders (e.g., HANAC syndrome, porencephaly, tortuosity of retinal arteries). Whereas COL4A1-related disorders are typically caused by glycine substitutions in the collagenous domain (84.4% of variants), only one variant in our cohort is a glycine substitution within the collagenous domain (1/10). We identified heterozygous COL4A1 mutations as a potential novel autosomal dominant cause of CAKUT that is allelic to the established COL4A1-related disorders and predominantly caused by non-glycine substitutions.


Asunto(s)
Colágeno Tipo IV/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Riñón/anomalías , Mutación , Fenotipo , Sistema Urinario/anomalías , Alelos , Sustitución de Aminoácidos , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Evolución Molecular , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Genómica/métodos , Heterocigoto , Humanos , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Masculino , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Navegador Web , Secuenciación del Exoma
10.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143558

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/epidemiología , Linaje , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Humanos , Incidencia , Riñón/anomalías , Ratones , Fenotipo , Pronóstico , Medición de Riesgo , Sensibilidad y Especificidad , Distribución por Sexo , Sistema Urinario/anomalías , Anomalías Urogenitales/epidemiología , Reflujo Vesicoureteral/epidemiología
11.
Nat Commun ; 9(1): 1960, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773874

RESUMEN

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.


Asunto(s)
Resistencia a Medicamentos/genética , Glucocorticoides/farmacología , Síndrome Nefrótico/tratamiento farmacológico , Mapas de Interacción de Proteínas/genética , Proteína de Unión al GTP rhoA/genética , Adulto , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Glucocorticoides/uso terapéutico , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mutación , Síndrome Nefrótico/genética , Linaje , Podocitos , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento , Secuenciación del Exoma , Proteína de Unión al GTP rhoA/metabolismo
12.
Clin J Am Soc Nephrol ; 13(1): 53-62, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29127259

RESUMEN

BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación del Exoma , Marcadores Genéticos , Mutación , Síndrome Nefrótico/congénito , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Tasa de Mutación , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Adulto Joven
13.
J Immunol Res ; 2017: 6305439, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676864

RESUMEN

Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.


Asunto(s)
Inmunidad Innata , Riñón/inmunología , Daño por Reperfusión/inmunología , Daño por Reperfusión/terapia , Lesión Renal Aguda/etiología , Animales , Humanos , Inflamación/terapia , Trasplante de Riñón/efectos adversos , Ratones , FN-kappa B/efectos de los fármacos , Agonistas del Receptor Purinérgico P1/inmunología , Daño por Reperfusión/prevención & control , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
14.
Acta Paediatr ; 105(1): e35-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26437121

RESUMEN

AIM: This studied reviewed renovascular hypertension (RVH) due to renal artery stenosis (RAS) in two Serbian paediatric centres from 2001 to 2013. METHODS: The patients' demographic data, underlying syndromes, blood pressure (BP), antihypertensive treatments and outcomes were reviewed. RESULTS: The incidence of RVH was 1.9 per million children per year during the study period, and there were 25 patients with RAS, aged 10.4 ± 5.2 years. At presentation, their mean blood pressure (BP) standard deviation scores were 6.9 ± 3.4 systolic and 5.2 ± 2.6 diastolic. BP loads on 24-hour ambulatory BP were 88 ± 14% systolic and 80 ± 29% diastolic. We found that 72% had fibromuscular dysplasia and 28% had underlying syndromes. RAS was unilateral in 64% and bilateral in 28%, and 8% had RAS of a single kidney. Antihypertensive treatment included antihypertensive drugs (100%), percutaneous transluminal angioplasty (92%), renal auto-transplantation (16%), surgical revascularisation (12%) and nephrectomy (12%). After 4.4 ± 3.6 years of follow-up, high BP was cured in 40% of the patients and 39.4% of the kidneys and improved in 48% (75.7%), with BP decreases of 20.3 ± 3.7% systolic and 16.3 ± 6.2% diastolic. CONCLUSION: Fibromuscular dysplasia was the most common cause of RVH in this study, and hypertension was cured or improved in 88% of the patients.


Asunto(s)
Displasia Fibromuscular/complicaciones , Hipertensión Renovascular/terapia , Obstrucción de la Arteria Renal/complicaciones , Adolescente , Antihipertensivos/uso terapéutico , Niño , Preescolar , Terapia Combinada , Femenino , Displasia Fibromuscular/diagnóstico , Estudios de Seguimiento , Humanos , Hipertensión Renovascular/diagnóstico , Hipertensión Renovascular/epidemiología , Hipertensión Renovascular/etiología , Trasplante de Riñón , Masculino , Nefrectomía , Obstrucción de la Arteria Renal/diagnóstico , Estudios Retrospectivos , Serbia/epidemiología , Resultado del Tratamiento
15.
Hum Genet ; 134(8): 905-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026792

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.


Asunto(s)
Proteínas Activadoras de GTPasa , Péptidos y Proteínas de Señalización Intercelular , Mutación , Proteínas del Tejido Nervioso , Receptores Inmunológicos , Transducción de Señal/genética , Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Exoma , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factores de Riesgo , Anomalías Urogenitales/embriología , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/embriología , Reflujo Vesicoureteral/genética
16.
Pediatr Nephrol ; 30(1): 79-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25129203

RESUMEN

BACKGROUND: A high prevalence of chronic kidney disease among children with focal segmental glomerulosclerosis (FSGS) leads to a permanent quest for good predictors of kidney dysfunction. Thus, we carried out a retrospective cohort study in order to examine known clinical and morphological predictors of adverse outcome, as well as to investigate glomerular nestin expression as a potential new early predictor of kidney dysfunction in children with FSGS. Relationships between nestin expression and clinical and morphological findings were also investigated. METHODS: Among 649 renal biopsy samples, obtained from two children's hospitals, FSGS was diagnosed in 60 children. Thirty-eight patients, who met the criteria for this study, were followed up for 9.0 ± 5.2 years. Using Kaplan-Meier and Cox's regression analysis, potential clinical and morphological predictors were applied in two models of prediction: after disease onset and after the biopsy. RESULTS: The present study revealed the following significant predictors of kidney dysfunction: patients' ages at disease onset, as well as age at biopsy, resistance to corticosteroid treatment, serum creatinine level, urine protein/creatinine ratio, vascular involvement, tubular atrophy, interstitial fibrosis, and decreased glomerular nestin expression. CONCLUSIONS: The most important finding of our study is that nestin can be used as a potential new early morphological predictor of kidney dysfunction in childhood onset of FSGS, since nestin has been obviously decreased in both sclerotic and normal glomeruli seen by light microscopy.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/metabolismo , Nestina/análisis , Adolescente , Biomarcadores/análisis , Niño , Preescolar , Estudios de Cohortes , Femenino , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Humanos , Lactante , Fallo Renal Crónico/epidemiología , Masculino , Estudios Retrospectivos , Adulto Joven
17.
Vojnosanit Pregl ; 71(4): 395-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24783421

RESUMEN

INTRODUCTION: The group of autosomal dominant disorders - Epstein syndrome, Sebastian syndrome, Fechthner syndrome and May-Hegglin anomaly - are characterised by thrombocytopenia with giant platelets, inclusion bodies in granulocytes and variable levels of deafness, disturbances of vision and renal function impairment. A common genetic background of these disorders are mutations in MYH9 gene, coding for the nonmuscle myosin heavy chain IIA. Differential diagnosis is important for the adequate treatment strategy. The aim of this case report was to present a patient with MYH9 disorder in Serbia. CASE REPORT: A 16-year-old boy was referred to our hospital with the diagnosis of resistant immune thrombocytopenia for splenectomy. Thrombocytopenia was incidentally discovered at the age of five. The treatment with corticosteroids on several occasions was unsuccessful. Although the platelet count was below 10 x 10(9)/L, there were no bleeding symptoms. Besides thrombocytopenia with giant platelets, on admission the patient also suffered sensorineuronal hearing loss and proteinuria. The diagnosis was confirmed with immunofluorescence and genetic analyses. CONCLUSION: Early recognition of MYH9-related diseases is essential to avoid unnecessary and potentially harmful treatments for misdiagnosed immune thrombocytopenia, and also for timely and proper therapy in attempt to delay end-stage renal failure and improve quality of life.


Asunto(s)
Pérdida Auditiva Sensorineural/diagnóstico , Proteínas Motoras Moleculares/genética , Cadenas Pesadas de Miosina/genética , Nefritis/etiología , Trombocitopenia/congénito , Adolescente , Diagnóstico Diferencial , Técnica del Anticuerpo Fluorescente , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Mutación , Nefritis/congénito , Recuento de Plaquetas , Serbia , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Trombocitopenia/fisiopatología
18.
J Am Soc Nephrol ; 25(9): 1917-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24700879

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately 40% of children with ESRD in the United States. Hitherto, mutations in 23 genes have been described as causing autosomal dominant isolated CAKUT in humans. However, >90% of cases of isolated CAKUT still remain without a molecular diagnosis. Here, we hypothesized that genes mutated in recessive mouse models with the specific CAKUT phenotype of unilateral renal agenesis may also be mutated in humans with isolated CAKUT. We applied next-generation sequencing technology for targeted exon sequencing of 12 recessive murine candidate genes in 574 individuals with isolated CAKUT from 590 families. In 15 of 590 families, we identified recessive mutations in the genes FRAS1, FREM2, GRIP1, FREM1, ITGA8, and GREM1, all of which function in the interaction of the ureteric bud and the metanephric mesenchyme. We show that isolated CAKUT may be caused partially by mutations in recessive genes. Our results also indicate that biallelic missense mutations in the Fraser/MOTA/BNAR spectrum genes cause isolated CAKUT, whereas truncating mutations are found in the multiorgan form of Fraser syndrome. The newly identified recessive biallelic mutations in these six genes represent the molecular cause of isolated CAKUT in 2.5% of the 590 affected families in this study.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Matriz Extracelular/genética , Síndrome de Fraser/genética , Cadenas alfa de Integrinas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/anomalías , Mutación , Proteínas del Tejido Nervioso/genética , Receptores de Interleucina/genética , Sistema Urinario/anomalías , Reflujo Vesicoureteral/genética , Animales , Anomalías Congénitas/genética , Modelos Animales de Enfermedad , Femenino , Genes Recesivos , Humanos , Enfermedades Renales/congénito , Enfermedades Renales/genética , Masculino , Ratones , Ratones Mutantes , Anomalías Urogenitales
19.
Kidney Int ; 85(6): 1310-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24152966

RESUMEN

Congenital abnormalities of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease and they are the most frequent cause of end-stage renal disease in children in the US. However, its genetic etiology remains mostly elusive. VACTERL association is a rare disorder that involves congenital abnormalities in multiple organs including the kidney and urinary tract in up to 60% of the cases. By homozygosity mapping and whole-exome resequencing combined with high-throughput mutation analysis by array-based multiplex PCR and next-generation sequencing, we identified recessive mutations in the gene TNF receptor-associated protein 1 (TRAP1) in two families with isolated CAKUT and three families with VACTERL association. TRAP1 is a heat-shock protein 90-related mitochondrial chaperone possibly involved in antiapoptotic and endoplasmic reticulum stress signaling. Trap1 is expressed in renal epithelia of developing mouse kidney E13.5 and in the kidney of adult rats, most prominently in proximal tubules and in thick medullary ascending limbs of Henle's loop. Thus, we identified mutations in TRAP1 as highly likely causing CAKUT or VACTERL association with CAKUT.


Asunto(s)
Canal Anal/anomalías , Análisis Mutacional de ADN , Esófago/anomalías , Exosomas , Pruebas Genéticas , Proteínas HSP90 de Choque Térmico , Cardiopatías Congénitas/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Mutación , Columna Vertebral/anomalías , Tráquea/anomalías , Reflujo Vesicoureteral/genética , Factores de Edad , Animales , Análisis Mutacional de ADN/métodos , Europa (Continente) , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Edad Gestacional , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Cardiopatías Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Riñón/embriología , Riñón/metabolismo , Deformidades Congénitas de las Extremidades/diagnóstico , Masculino , Ratones , Reacción en Cadena de la Polimerasa Multiplex , Linaje , Valor Predictivo de las Pruebas , Factores de Riesgo , Estados Unidos , Anomalías Urogenitales , Reflujo Vesicoureteral/diagnóstico
20.
BMC Nephrol ; 14: 66, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23517575

RESUMEN

BACKGROUND: Pulmonary renal syndrome (PRS), denoting the presence of diffuse alveolar hemorrhage and glomerulonephritis as manifestations of systemic autoimmune disease, is very rare in childhood. The coexistence of circulating anti-neutrophil cytoplasmic antibody (ANCA) and anti-glomerular basement membrane (GBM) disease in children affected by this syndrome is exceptional, with unfavorable outcome in five out of seven patients reported to date. We describe a child with PRS associated with both circulating anti-myeloperoxidase (anti-MPO) ANCA and anti-GBM disease on renal biopsy who was successfully treated with immunosuppressive therapy. CASE PRESENTATION: A 10-year old girl presented with fever, fatigue, malaise, and pallor followed by hemoptysis and severe anemia. Diffuse alveolar hemorrhage was revealed on fiberoptic bronchoscopy. Renal findings consisted of microscopic hematuria, moderate proteinuria, and anti-GBM disease on renal biopsy. ANCA with anti-MPO specificity were present whereas anti-GBM antibodies were on borderline for positivity. Methyl-prednisolone pulses followed by prednisone led to cessation of hemoptysis, marked improvement of lung fuction, and normal finding on chest x-ray within 10 days. An immunosuppressive regimen was then given consisting of prednisone daily for 4 weeks with subsequent taper on alternate day, i.v. cyclophosphamide pulses monthly for 6 doses, followed by mycophenolate mofetil that resulted in normal lung function tests, hemoglobin concentration, and anti-MPO level within four subsequent weeks. During 10-months of follow-up she remained well, her blood pressure and renal function tests were normal, and proteinuria and hematuria gradually resolved. CONCLUSION: We report a child with an exceptionally rare coexistence of circulating ANCA and anti-GBM disease manifesting as PRS in whom renal disease was not the prominent part of clinical presentation, contrary to other reported pediatric patients. A review of literature on disease with double positive antibodies is also presented. Evaluation of a patient with PRS should include testing for presence of different antibodies. An early diagnosis and rapid institution of aggressive immunosuppressive therapy can induce remission and preserve renal function. Renal prognosis depends on the extent of kidney injury at diagnosis and appropriate treatment.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/complicaciones , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/diagnóstico , Anticuerpos Anticitoplasma de Neutrófilos , Glomerulonefritis/complicaciones , Glomerulonefritis/diagnóstico , Hemorragia/complicaciones , Hemorragia/diagnóstico , Enfermedades Pulmonares/complicaciones , Enfermedades Pulmonares/diagnóstico , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/sangre , Anticuerpos Anticitoplasma de Neutrófilos/sangre , Niño , Femenino , Glomerulonefritis/sangre , Hemorragia/sangre , Humanos , Enfermedades Pulmonares/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...