Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4617, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816363

RESUMEN

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.


Asunto(s)
Intrones , Empalme del ARN , Empalmosomas , Humanos , Intrones/genética , Empalmosomas/metabolismo , Células HEK293 , ARN Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/genética , Exones/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HeLa , Sitios de Empalme de ARN
2.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745605

RESUMEN

Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.

3.
Res Sq ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398028

RESUMEN

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of the first viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectroscopy. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.

4.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435176

RESUMEN

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Secuencia de Bases , Intrones/genética , Exones/genética
5.
Genes Dev ; 33(21-22): 1555-1574, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31558568

RESUMEN

The termination of pre-mRNA splicing functions to discard suboptimal substrates, thereby enhancing fidelity, and to release excised introns in a manner coupled to spliceosome disassembly, thereby allowing recycling. The mechanism of termination, including the RNA target of the DEAH-box ATPase Prp43p, remains ambiguous. We discovered a critical role for nucleotides at the 3' end of the catalytic U6 small nuclear RNA in splicing termination. Although conserved sequence at the 3' end is not required, 2' hydroxyls are, paralleling requirements for Prp43p biochemical activities. Although the 3' end of U6 is not required for recruiting Prp43p to the spliceosome, the 3' end cross-links directly to Prp43p in an RNA-dependent manner. Our data indicate a mechanism of splicing termination in which Prp43p translocates along U6 from the 3' end to disassemble the spliceosome and thereby release suboptimal substrates or excised introns. This mechanism reveals that the spliceosome becomes primed for termination at the same stage it becomes activated for catalysis, implying a requirement for stringent control of spliceosome activity within the cell.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Empalme del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Intrones/genética , Unión Proteica , Empalme del ARN/genética
6.
RNA ; 23(7): 1110-1124, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416566

RESUMEN

Three families of nucleic acid-dependent ATPases (DEAH/RHA, Ski2-like, and NS3/NPH-II), termed the DExH ATPases, are thought to execute myriad functions by processive, ATP-dependent, 3' to 5' translocation along single-stranded nucleic acid. While the mechanism of translocation of the viral NS3/NPH-II family has been studied extensively, it has not been clear if or how the principles that have emerged for this family extend to the other two families. Here we report the crystal structure of the yeast DEAH/RHA family ATPase Prp43p, which functions in splicing and ribosome biogenesis, in complex with poly-uracil and a nonhydrolyzable ATP analog. The structure reveals a conserved DEAH/RHA-specific variation of motif Ib within the RecA1 domain of the catalytic core, in which the motif elongates as a ß-hairpin that bookends the 3' end of a central RNA stack, a function that in the viral and Ski-2 families is performed by an auxiliary domain. Supporting a fundamental role in translocation, mutations in this hairpin abolished helicase activity without affecting RNA binding or ATPase activity. While the structure reveals differences with viral ATPases in the RecA1 domain, our structure demonstrates striking similarities with viral ATPases in the RecA2 domain of the catalytic core, including both a prominent ß-hairpin that bookends the 5' end of the RNA stack and a dynamic motif Va that is implicated in mediating translocation. Our crystal structure, genetic, and biochemical experiments, as well as comparisons with other DExH ATPases, support a generalized mechanism for the DExH class of helicases involving a pair of bookends that inchworm along RNA.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Difosfato/análogos & derivados , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
J Mol Biol ; 428(20): 4100-4114, 2016 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-27593161

RESUMEN

Antibodies that bind RNA represent an unrealized source of reagents for synthetic biology and for characterizing cellular transcriptomes. However, facile access to RNA-binding antibodies requires the engineering of effective Fab libraries guided by the knowledge of the principles that govern RNA recognition. Here, we describe a Fab identified from a minimalist synthetic library during phage display against a branched RNA target. The Fab (BRG) binds with 20nM dissociation constant to a single-stranded RNA (ssRNA) sequence adjacent to the branch site and can block the action of debranchase enzyme. We report the crystal structure in complex with RNA target at 2.38Å. The Fab traps the RNA in a hairpin conformation that contains a 2-bp duplex capped by a tetraloop. The paratope surface consists of residues located in four complementarity-determining regions including a major contribution from H3, which adopts a helical structure that projects into a deep, wide groove formed by the RNA. The amino acid composition of the paratope reflects the library diversity, consisting mostly of tyrosine and serine residues and a small but significant contribution from a single arginine residue. This structure, involving the recognition of ssRNA via a stem-loop conformation, together with our two previous structures involving the recognition of an RNA hairpin loop and an RNA tertiary structure, reveals the capacity of minimalist libraries biased with tyrosine, serine, glycine, and arginine to form binding surfaces for specific RNA conformations and distinct levels of RNA structural hierarchy.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/metabolismo , Factores Inmunológicos/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Factores Inmunológicos/química , Factores Inmunológicos/genética , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , ARN/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
8.
Mol Cell Biol ; 36(21): 2697-2714, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27528618

RESUMEN

Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.

10.
Oncotarget ; 7(18): 26496-515, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27034163

RESUMEN

Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.


Asunto(s)
Proteína 58 DEAD Box/efectos de los fármacos , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/efectos de la radiación , Interferón beta/biosíntesis , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , ARN Pequeño no Traducido/efectos de los fármacos , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
11.
Cell ; 164(5): 985-98, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919433

RESUMEN

During pre-mRNA splicing, a central step in the expression and regulation of eukaryotic genes, the spliceosome selects splice sites for intron excision and exon ligation. In doing so, the spliceosome must distinguish optimal from suboptimal splice sites. At the catalytic stage of splicing, suboptimal splice sites are repressed by the DEAH-box ATPases Prp16 and Prp22. Here, using budding yeast, we show that these ATPases function further by enabling the spliceosome to search for and utilize alternative branch sites and 3' splice sites. The ATPases facilitate this search by remodeling the splicing substrate to disengage candidate splice sites. Our data support a mechanism involving 3' to 5' translocation of the ATPases along substrate RNA and toward a candidate site, but, surprisingly, not across the site. Thus, our data implicate DEAH-box ATPases in acting at a distance by pulling substrate RNA from the catalytic core of the spliceosome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas/metabolismo , Sitios de Empalme de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Exones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN , Saccharomyces cerevisiae/genética
12.
RNA ; 22(2): 237-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26647463

RESUMEN

Pre-mRNA splicing is a central step in the shaping of the eukaryotic transcriptome and in the regulation of gene expression. Yet, due to a focus on fully processed mRNA, common approaches for defining pre-mRNA splicing genome-wide are suboptimal-especially with respect to defining the branch point sequence, a key cis-element that initiates the chemistry of splicing. Here, we report a complementary intron-centered approach designed to more efficiently, simply, and directly define splicing events genome-wide. Specifically, we developed a method distinguished by deep sequencing of lariat intron termini (LIT-seq). In a test of LIT-seq using the budding yeast Saccharomyces cerevisiae, we not only successfully captured the majority of annotated, expressed splicing events but also uncovered 45 novel splicing events, establishing the sensitivity of LIT-seq. Moreover, our libraries were highly enriched with reads that reported on splice sites; by a simple and direct inspection of sequencing reads, we empirically defined both 5' splice sites and branch sites, as well as their consensus sequences, with nucleotide resolution. Additionally, our study revealed that the 3' termini of lariat introns are subject to nontemplated addition of adenosines, characteristic of signals sensed by 3' to 5' RNA turnover machinery. Collectively, this work defines a novel, genome-wide approach for analyzing splicing with unprecedented depth, specificity, and resolution.


Asunto(s)
Genoma Fúngico , ARN Nucleotidiltransferasas/metabolismo , Precursores del ARN/química , ARN de Hongos/química , Saccharomyces cerevisiae/metabolismo , Empalmosomas/química , Secuencia de Bases , Regulación Fúngica de la Expresión Génica , Intrones , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Nucleotidiltransferasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Empalmosomas/genética , Empalmosomas/metabolismo
13.
J Ophthalmol ; 2015: 816329, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26137319

RESUMEN

Purpose. The small nuclear ribonucleoprotein 200 kDa (SNRNP200) gene is a fundamental component for precursor message RNA (pre-mRNA) splicing and has been implicated in the etiology of autosomal dominant retinitis pigmentosa (adRP). This study aims to determine the consequences of knocking down Snrnp200 in zebrafish. Methods. Expression of the Snrnp200 transcript in zebrafish was determined via whole mount in situ hybridization. Morpholino oligonucleotide (MO) aiming to knock down the expression of Snrnp200 was injected into zebrafish embryos, followed by analyses of aberrant splicing and expression of the U4/U6-U5 tri-small nuclear ribonucleoproteins (snRNPs) components and retina-specific transcripts. Systemic changes and retinal phenotypes were further characterized by histological study and immunofluorescence staining. Results. Snrnp200 was ubiquitously expressed in zebrafish. Knocking down Snrnp200 in zebrafish triggered aberrant splicing of the cbln1 gene, upregulation of other U4/U6-U5 tri-snRNP components, and downregulation of a panel of retina-specific transcripts. Systemic defects were found correlated with knockdown of Snrnp200 in zebrafish. Only demorphogenesis of rod photoreceptors was detected in the initial stage, mimicking the disease characteristics of RP. Conclusions. We conclude that knocking down Snrnp200 in zebrafish could alter regular splicing and expression of a panel of genes, which may eventually trigger rod defects.

14.
Nat Struct Mol Biol ; 21(5): 464-471, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24747940

RESUMEN

To catalyze pre-mRNA splicing, U6 small nuclear RNA positions two metals that interact directly with the scissile phosphates. U6 metal ligands correspond stereospecifically to metal ligands within the catalytic domain V of a group II self-splicing intron. Domain V ligands are organized by base-triple interactions, which also juxtapose the 3' splice site with the catalytic metals. However, in the spliceosome, the mechanism for organizing catalytic metals and recruiting the substrate has remained unclear. Here we show by genetics, cross-linking and biochemistry in yeast that analogous triples form in U6 and promote catalytic-metal binding and both chemical steps of splicing. Because the triples include an element that defines the 5' splice site, they also provide a mechanism for juxtaposing the pre-mRNA substrate with the catalytic metals. Our data indicate that U6 adopts a group II intron-like tertiary conformation to catalyze splicing.


Asunto(s)
Empalme del ARN , Saccharomyces cerevisiae/genética , Empalmosomas/química , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/química , Saccharomyces cerevisiae/metabolismo
15.
J Org Chem ; 79(8): 3647-52, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24635216

RESUMEN

Oligoribonucleotides containing 3'-S-phosphorothiolate linkages possess properties that can reveal deep mechanistic insights into ribozyme-catalyzed reactions. "Photocaged" 3'-S- RNAs could provide a strategy to stall reactions at the chemical stage and release them after assembly steps have occurred. Toward this end, we describe here an approach for the synthesis of 2'-O-(o-nitrobenzyl)-3'-thioguanosine phosphoramidite starting from N(2)-isobutyrylguanosine in nine steps with 10.2% overall yield. Oligonucleotides containing the 2'-O-(o-nitrobenzyl)-3'-S-guanosine nucleotide were then constructed, characterized, and used in a nuclear pre-mRNA splicing reaction.


Asunto(s)
Guanosina/análogos & derivados , Sondas Moleculares/síntesis química , Oligorribonucleótidos/química , Compuestos Organofosforados/síntesis química , Fosfatos/síntesis química , ARN Catalítico/química , Guanosina/síntesis química , Guanosina/química , Sondas Moleculares/química , Conformación de Ácido Nucleico , Fosfatos/química , Empalme del ARN
16.
RNA ; 20(3): 282-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24442613

RESUMEN

After undergoing massive RNA and protein rearrangements during assembly, the spliceosome undergoes a final, more subtle, ATP-dependent rearrangement that is essential for catalysis. This rearrangement requires the DEAH-box protein Prp2p, an RNA-dependent ATPase. Prp2p has been implicated in destabilizing interactions between the spliceosome and the protein complexes SF3 and RES, but a role for Prp2p in destabilizing RNA-RNA interactions has not been explored. Using directed molecular genetics in budding yeast, we have found that a cold-sensitive prp2 mutation is suppressed not only by mutations in SF3 and RES components but also by a range of mutations that disrupt the spliceosomal catalytic core element U2/U6 helix I, which is implicated in juxtaposing the 5' splice site and branch site and in positioning metal ions for catalysis within the context of a putative catalytic triplex; indeed, mutations in this putative catalytic triplex also suppressed a prp2 mutation. Remarkably, we also found that prp2 mutations rescue lethal mutations in U2/U6 helix I. These data provide evidence that RNA elements that comprise the catalytic core are already formed at the Prp2p stage and that Prp2p destabilizes these elements, directly or indirectly, both to proofread spliceosome activation and to promote reconfiguration of the spliceosome to a fully competent, catalytic conformation.


Asunto(s)
ARN Helicasas DEAD-box/genética , Empalme del ARN/genética , ARN Catalítico/química , ARN Nuclear Pequeño/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Empalmosomas/genética , Dominio Catalítico , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Mutación/genética , Conformación de Ácido Nucleico , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Catalítico/genética , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nature ; 503(7475): 229-34, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24196718

RESUMEN

In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a dynamic machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, after the discovery of self-splicing group II intron RNAs, the snRNAs were proposed to catalyse splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported so far. By using metal rescue strategies in spliceosomes from budding yeast, here we show that the U6 snRNA catalyses both of the two splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Notably, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms and probably common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome.


Asunto(s)
Precursores del ARN/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Catálisis , Núcleo Celular/metabolismo , Intrones/genética , Metales/metabolismo , Modelos Biológicos , ARN de Hongos/metabolismo , Empalmosomas/metabolismo
18.
RNA Biol ; 10(7): 1073-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770752

RESUMEN

The spliceosome discriminates against suboptimal substrates, both during assembly and catalysis, thereby enhancing specificity during pre-mRNA splicing. Central to such fidelity mechanisms are a conserved subset of the DEAD- and DEAH-box ATPases, which belong to a superfamily of proteins that mediate RNP rearrangements in almost all RNA-dependent processes in the cell. Through an investigation of the mechanisms contributing to the specificity of 5' splice site cleavage, two related reports, one from our lab and the other from the Cheng lab, have provided insights into fidelity mechanisms utilized by the spliceosome. In our work, we found evidence for a kinetic proofreading mechanism in splicing in which the DEAH-box ATPase Prp16 discriminates against substrates undergoing slow 5' splice site cleavage. Additionally, our study revealed that discriminated substrates are discarded through a general spliceosome disassembly pathway, mediated by another DEAH-box ATPase Prp43. In their work, Tseng et al. described the underlying molecular events through which Prp16 discriminates against a splicing substrate during 5' splice site cleavage. Here, we present a synthesis of these two studies and, additionally, provide the first biochemical evidence for discrimination of a suboptimal splicing substrate just prior to 5' splice site cleavage. Together, these findings support a general mechanism for a ubiquitous superfamily of ATPases in enhancing specificity during RNA-dependent processes in the cell.


Asunto(s)
Empalme del ARN/fisiología , ARN Helicasas DEAD-box/metabolismo , Intrones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Empalmosomas/metabolismo , Especificidad por Sustrato
19.
Nat Struct Mol Biol ; 20(6): 728-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23686287

RESUMEN

Splicing of pre-mRNAs in eukaryotes is catalyzed by the spliceosome, a large RNA-protein metalloenzyme. The catalytic center of the spliceosome involves a structure comprising the U2 and U6 snRNAs and includes a metal bound by U6 snRNA. The precise architecture of the splicesome active site, however, and the question of whether it includes protein components, remains unresolved. A wealth of evidence places the protein PRP8 at the heart of the spliceosome through assembly and catalysis. Here we provide evidence that the RNase H domain of PRP8 undergoes a conformational switch between the two steps of splicing, rationalizing yeast prp8 alleles that promote either the first or second step. We also show that this switch unmasks a metal-binding site involved in the second step. Together, these data establish that PRP8 is a metalloprotein that promotes exon ligation within the spliceosome.


Asunto(s)
Iones/metabolismo , Metales/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cristalografía por Rayos X , Ligadura , Modelos Moleculares , Conformación Proteica , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
20.
Genes Dev ; 27(6): 627-38, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23468430

RESUMEN

The fission yeast telomerase RNA (TER1) precursor harbors an intron immediately downstream from its mature 3' end. Unlike most introns, which are removed from precursor RNAs by the spliceosome in two sequential but tightly coupled transesterification reactions, TER1 only undergoes the first cleavage reaction during telomerase RNA maturation. The mechanism underlying spliceosome-mediated 3' end processing has remained unclear. We now demonstrate that a strong branch site (BS), a long distance to the 3' splice site (3' SS), and a weak polypyrimidine (Py) tract act synergistically to attenuate the transition from the first to the second step of splicing. The observation that a strong BS antagonizes the second step of splicing in the context of TER1 suggests that the BS-U2 snRNA interaction is disrupted after the first step and thus much earlier than previously thought. The slow transition from first to second step triggers the Prp22 DExD/H-box helicase-dependent rejection of the cleaved products and Prp43-dependent "discard" of the splicing intermediates. Our findings explain how the spliceosome can function in 3' end processing and provide new insights into the mechanism of splicing.


Asunto(s)
Exones/genética , Intrones/genética , ARN de Hongos/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Telomerasa/metabolismo , Secuencia de Bases , Proteínas Nucleares/metabolismo , ARN/genética , ARN/metabolismo , Empalme del ARN , Ribonucleoproteínas/metabolismo , Empalmosomas/metabolismo , Factor de Empalme U2AF , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...