Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Med Phys ; 51(2): 1326-1339, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38131614

RESUMEN

BACKGROUND: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation. PURPOSE: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination. METHODS: BAO considers all available beam directions sampled on a gantry-table map with the collimator angle aligned to the superior-inferior axis (colli-DTRT) or static (NC-VMAT). First, FMO is performed, and beam directions are scored based on their contributions to the objective function. The map is thresholded to remove the least contributing beam directions, and arc candidates are formed by adjacent beam directions with the same table angle. Next, FMO and arc candidate trimming, based on objective function penalty score, is performed iteratively until a desired total gantry angle range is reached. Direct aperture optimization on the final set of colli-DTRT or NC-VMAT arcs generates deliverable plans. colli-DTRT and NC-VMAT plans were created for seven clinically-motivated cases with targets in the head and neck (two cases), brain, esophagus, lung, breast, and prostate. colli-DTRT and NC-VMAT were compared to coplanar VMAT plans as well as to class-solution non-coplanar VMAT plans for the brain and head and neck cases. Dosimetric validation was performed for one colli-DTRT (head and neck) and one NC-VMAT (breast) plan using film measurements. RESULTS: Target coverage and conformity was similar for all techniques. colli-DTRT and NC-VMAT plans had improved dosimetric performance compared to coplanar VMAT for all treatment sites except prostate where all techniques were equivalent. For the head and neck and brain cases, mean dose reduction-in percentage of the prescription dose-to parallel organs was on average 0.7% (colli-DTRT), 0.8% (NC-VMAT) and 0.4% (class-solution) compared to VMAT. The reduction in D2% for the serial organs was on average 1.7% (colli-DTRT), 2.0% (NC-VMAT) and 0.9% (class-solution). For the esophagus, lung, and breast cases, mean dose reduction to parallel organs was on average 0.2% (colli-DTRT) and 0.3% (NC-VMAT) compared to VMAT. The reduction in D2% for the serial organs was on average 1.3% (colli-DTRT) and 0.9% (NC-VMAT). Estimated delivery times for colli-DTRT and NC-VMAT were below 4 min for a full gantry angle range of 720°, including transitions between arcs, except for the brain case where multiple arcs covered the whole table angle range. These times are in the same order as the class-solution for the head and neck and brain cases. Total optimization times were 25%-107% longer for colli-DTRT, including BAO, compared to VMAT. CONCLUSIONS: We successfully developed dosimetrically motivated BAO for colli-DTRT and NC-VMAT treatment planning. colli-DTRT and NC-VMAT are applicable to multiple treatment sites, including body sites, with beneficial or equivalent dosimetric performances compared to coplanar VMAT and reasonable delivery times.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Masculino , Encéfalo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Rotación , Femenino
2.
J Appl Clin Med Phys ; 24(11): e14165, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37782250

RESUMEN

Non-coplanar radiotherapy treatment techniques on C-arm linear accelerators have the potential to reduce dose to organs-at-risk in comparison with coplanar treatment techniques. Accurately predicting possible collisions between gantry, table and patient during treatment planning is needed to ensure patient safety. We offer a freely available collision prediction tool using Blender, a free and open-source 3D computer graphics software toolset. A geometric model of a C-arm linear accelerator including a library of patient models is created inside Blender. Based on the model, collision predictions can be used both to calculate collision-free zones and to check treatment plans for collisions. The tool is validated for two setups, once with and once without a full body phantom with the same table position. For this, each gantry-table angle combination with a 2° resolution is manually checked for collision interlocks at a TrueBeam system and compared to simulated collision predictions. For the collision check of a treatment plan, the tool outputs the minimal distance between the gantry, table and patient model and a video of the movement of the gantry and table, which is demonstrated for one use case. A graphical user interface allows user-friendly input of the table and patient specification for the collision prediction tool. The validation resulted in a true positive rate of 100%, which is the rate between the number of correctly predicted collision gantry-table combinations and the number of all measured collision gantry-table combinations, and a true negative rate of 89%, which is the ratio between the number of correctly predicted collision-free combinations and the number of all measured collision-free combinations. A collision prediction tool is successfully created and able to produce maps of collision-free zones and to test treatment plans for collisions including visualisation of the gantry and table movement.


Asunto(s)
Comportamiento del Uso de la Herramienta , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica
3.
Med Phys ; 50(11): 7104-7117, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748175

RESUMEN

BACKGROUND: To improve organ at risk (OAR) sparing, dynamic trajectory radiotherapy (DTRT) extends VMAT by dynamic table and collimator rotation during beam-on. However, comprehensive investigations regarding the impact of the gantry-table (GT) rotation gradient on the DTRT plan quality have not been conducted. PURPOSE: To investigate the impact of a user-defined GT rotation gradient on plan quality of DTRT plans in terms of dosimetric plan quality, dosimetric robustness, deliverability, and delivery time. METHODS: The dynamic trajectories of DTRT are described by GT and gantry-collimator paths. The GT path is determined by minimizing the overlap of OARs with planning target volume (PTV). This approach is extended to consider a GT rotation gradient by means of a maximum gradient of the path ( G m a x ${G}_{max}$ ) between two adjacent control points ( G = | Δ table angle / Δ gantry angle | $G = | \Delta {{\mathrm{table\ angle}}/\Delta {\mathrm{gantry\ angle}}} |$ ) and maximum absolute change of G ( Δ G m a x ${{\Delta}}{G}_{max}$ ). Four DTRT plans are created with different maximum G&∆G: G m a x ${G}_{max}$ & Δ G m a x ${{\Delta}}{G}_{max}$  = 0.5&0.125 (DTRT-1), 1&0.125 (DTRT-2), 3&0.125 (DTRT-3) and 3&1|(DTRT-4), including 3-4 dynamic trajectories, for three clinically motivated cases in the head and neck and brain region (A, B, and C). A reference VMAT plan for each case is created. For all plans, plan quality is assessed and compared. Dosimetric plan quality is evaluated by target coverage, conformity, and OAR sparing. Dosimetric robustness is evaluated against systematic and random patient-setup uncertainties between ± 3 mm $ \pm 3\ {\mathrm{mm}}$ in the lateral, longitudinal, and vertical directions, and machine uncertainties between ± 4 ∘ $ \pm 4^\circ \ $ in the dynamically rotating machine components (gantry, table, collimator rotation). Delivery time is recorded. Deliverability and delivery accuracy on a TrueBeam are assessed by logfile analysis for all plans and additionally verified by film measurements for one case. All dose calculations are Monte Carlo based. RESULTS: The extension of the DTRT planning process with user-defined G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ to investigate the impact of the GT rotation gradient on plan quality is successfully demonstrated. With increasing G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ , slight (case C, D m e a n , p a r o t i d l . ${D}_{mean,\ parotid\ l.}$ : up to|-1|Gy) and substantial (case A, D 0.03 c m 3 , o p t i c n e r v e r . ${D}_{0.03c{m}^3,\ optic\ nerve\ r.}$ : up to -9.3 Gy, case|B, D m e a n , b r a i n $\ {D}_{mean,\ brain}$ : up to -4.7|Gy) improvements in OAR sparing are observed compared to VMAT, while maintaining similar target coverage. All plans are delivered on the TrueBeam. Expected and actual machine position values recorded in the logfiles deviated by <0.2° for gantry, table and collimator rotation. The film measurements agreed by >96% (2%|global/2 mm Gamma passing rate) with the dose calculation. With increasing G m a x & Δ G m a x ${G}_{max}\& {{\Delta}}{G}_{max}$ , delivery time is prolonged by <2 min/trajectory (DTRT-4) compared to VMAT and DTRT-1. The DTRT plans for case A and B and the VMAT plan for case C plan reveal the best dosimetric robustness for the considered uncertainties. CONCLUSION: The impact of the GT rotation gradient on DTRT plan quality is comprehensively investigated for three cases in the head and neck and brain region. Increasing freedom in this gradient improves dosimetric plan quality at the cost of increased delivery time for the investigated cases. No clear dependency of GT rotation gradient on dosimetric robustness is observed.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Rotación , Planificación de la Radioterapia Asistida por Computador , Radiometría
4.
Med Phys ; 50(10): 6535-6542, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37338935

RESUMEN

BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes. PURPOSE: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery. METHODS: A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold). RESULTS: The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%. CONCLUSION: Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT.


Asunto(s)
Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Humanos , Estudios de Factibilidad , Radiometría , Pulmón , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica
5.
Med Phys ; 49(7): 4780-4793, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35451087

RESUMEN

BACKGROUND: Evaluating plan robustness is a key step in radiotherapy. PURPOSE: To develop a flexible Monte Carlo (MC)-based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity-modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components. METHODS: The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user-defined uncertainty scenarios to populate a robustness space. An uncertainty scenario is defined by a certain combination of uncertainties in patient setup, rigid intrafraction motion and in mechanical steering of the following machine components: angles of gantry, collimator, table-yaw, table-pitch, table-roll, translational positions of jaws, multileaf-collimator (MLC) banks, and single MLC leaves. The Swiss Monte Carlo Plan (SMCP) is integrated in this tool to serve as the backbone for the MC dose calculations incorporating the uncertainties. The calculated dose distributions serve as input for the second part of the tool, handling the quantitative evaluation of the dosimetric impact of the uncertainties. A graphical user interface (GUI) is developed to simultaneously evaluate the uncertainty scenarios according to user-specified conditions based on dose-volume histogram (DVH) parameters, fast and exact gamma analysis, and dose differences. Additionally, a robustness index (RI) is introduced with the aim to simultaneously evaluate and condense dosimetric robustness against multiple uncertainties into one number. The RI is defined as the ratio of scenarios passing the conditions on the dose distributions. Weighting of the scenarios in the robustness space is possible to consider their likelihood of occurrence. The robustness tool is applied on IMRT, a volumetric modulated arc therapy (VMAT), a dynamic trajectory radiotherapy (DTRT), and a dynamic mixed beam radiotherapy (DYMBER) plan for a brain case to evaluate the robustness to uncertainties of gantry-, table-, collimator angle, MLC, and intrafraction motion. Additionally, the robustness of the IMRT, VMAT, and DTRT plan against patient setup uncertainties are compared. The robustness tool is validated by Delta4 measurements for scenarios including all uncertainty types available. RESULTS: The robustness tool performs simultaneous calculation of uncertainty scenarios, and the GUI enables their fast evaluation. For all evaluated plans and uncertainties, the planning target volume (PTV) margin prevented major clinical target volume (CTV) coverage deterioration (maximum observed standard deviation of D 98 % CTV $D98{\% _{{\rm{CTV}}}}$ was 1.3 Gy). OARs close to the PTV experienced larger dosimetric deviations (maximum observed standard deviation of D 2 % chiasma $D2{\% _{{\rm{chiasma}}}}$ was 14.5 Gy). Robustness comparison by RI evaluation against patient setup uncertainties revealed better dosimetric robustness of the VMAT and DTRT plans as compared to the IMRT plan. Delta4 validation measurements agreed with calculations by >96% gamma-passing rate (3% global/2 mm). CONCLUSIONS: The robustness tool was successfully implemented. Calculation and evaluation of uncertainty scenarios with the robustness tool were demonstrated on a brain case. Effects of patient and machine-specific uncertainties and the combination thereof on the dose distribution are evaluated in a user-friendly GUI to quantitatively assess and compare treatment plans and their robustness.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Método de Montecarlo , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Incertidumbre
6.
Phys Med ; 45 Suppl 1: S3, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29413853

RESUMEN

Over the last couple of years the implementation of Monte Carlo (MC) methods of grating based imaging techniques is of increasing interest. Several different approaches were taken to include coherent effects into MC in order to simulate the radiation transport of the image forming procedure. These include full MC using FLUKA [1], which however are only considering monochromatic sources. Alternatively, ray-tracing based MC [2] allow fast simulations with the limitation to provide only qualitative results, i.e. this technique is not suitable for dose calculation in the imaged object. Finally, hybrid models [3] were used allowing quantitative results in reasonable computation time, however only two-dimensional implementations are available. Thus, this work aims to develop a full MC framework for X-ray grating interferometry imaging systems using polychromatic sources suitable for large-scale samples. For this purpose the EGSnrc C++ MC code system is extended to take Snell's law, the optical path length and Huygens principle into account. Thereby the EGSnrc library was modified, e.g. the complex index of refraction has to be assigned to each region depending on the material. The framework is setup to be user-friendly and robust with respect to future updates of the EGSnrc package. These implementations have to be tested using dedicated academic situations. Next steps include the validation by comparisons of measurements for different setups with the corresponding MC simulations. Furthermore, the newly developed implementation will be compared with other simulation approaches. This framework will then serve as bases for dose calculation on CT data and has further potential to investigate the image formation process in grating based imaging systems.

7.
Cardiovasc Res ; 113(10): 1230-1242, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28898997

RESUMEN

AIMS: Angiotensin II-infused ApoE-/- mice are a popular mouse model for preclinical aneurysm research. Here, we provide insight in the often-reported but seldom-explained variability in shape of dissecting aneurysms in these mice. METHODS AND RESULTS: N = 45 excised aortas were scanned ex vivo with phase-contrast X-ray tomographic microscopy. Micro-ruptures were detected near the ostium of celiac and mesenteric arteries in 8/11 mice that were sacrificed after 3 days of angiotensin II-infusion. At later time points (after 10, 18, and 28 days) the variability in shape of thoraco-abdominal lesions (occurring in 31/34 mice) was classified into 7 different categories based on the presence or absence of a medial tear (31/31), an intramural hematoma (23/31) or a false channel (11/23). Medial tears were detected both in the thoracic and the abdominal aorta and were most prevalent at the left and ventral aspects of celiac and mesenteric arteries. The axial length of the hematoma strongly correlated to the total number of ruptured branch ostia (r2 = 0.78) and in 22/23 mice with a hematoma the ostium of the left suprarenal artery had ruptured. Supraceliac diameters at baseline were significantly lower for mice that did not develop an intramural hematoma, and the formation of a false channel within that intramural hematoma depended on the location, rather than the length, of the medial tear. CONCLUSION: Based on our observations we propose an elaborate hypothesis that explains how aortic side branches (i) affect the initiation and propagation of medial tears and the subsequent adventitial dissection and (ii) affect the variability in shape of dissecting aneurysms. This hypothesis was partially validated through the live visualization of a dissecting aneurysm that formed during micro-CT imaging, and led us to the conclusion that angiotensin II-infused mice are more clinically relevant for the study of aortic dissections than for the study of abdominal aortic aneurysms.


Asunto(s)
Angiotensina II , Aorta Abdominal/patología , Aorta Torácica/patología , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Torácica/patología , Disección Aórtica/patología , Disección Aórtica/inducido químicamente , Disección Aórtica/genética , Disección Aórtica/metabolismo , Animales , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/metabolismo , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Aortografía/métodos , Angiografía por Tomografía Computarizada , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hematoma/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Factores de Tiempo , Ultrasonografía Doppler de Pulso , Remodelación Vascular , Microtomografía por Rayos X
8.
Med Phys ; 44(4): 1212-1223, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28134989

RESUMEN

PURPOSE: To develop a robust and efficient process that detects relevant dose errors (dose errors of ≥5%) in external beam radiation therapy and directly indicates the origin of the error. The process is illustrated in the context of electronic portal imaging device (EPID)-based angle-resolved volumetric-modulated arc therapy (VMAT) quality assurance (QA), particularly as would be implemented in a real-time monitoring program. METHODS: A Swiss cheese error detection (SCED) method was created as a paradigm for a cine EPID-based during-treatment QA. For VMAT, the method compares a treatment plan-based reference set of EPID images with images acquired over each 2° gantry angle interval. The process utilizes a sequence of independent consecutively executed error detection tests: an aperture check that verifies in-field radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment check to examine if rotation, scaling, and translation are within tolerances; pixel intensity check containing the standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each check were determined. To test the SCED method, 12 different types of errors were selected to modify the original plan. A series of angle-resolved predicted EPID images were artificially generated for each test case, resulting in a sequence of precalculated frames for each modified treatment plan. The SCED method was applied multiple times for each test case to assess the ability to detect introduced plan variations. To compare the performance of the SCED process with that of a standard gamma analysis, both error detection methods were applied to the generated test cases with realistic noise variations. RESULTS: Averaged over ten test runs, 95.1% of all plan variations that resulted in relevant patient dose errors were detected within 2° and 100% within 14° (<4% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 89.1% were detected by the SCED method within 2°. Based on the type of check that detected the error, determination of error sources was achieved. With noise ranging from no random noise to four times the established noise value, the averaged relevant dose error detection rate of the SCED method was between 94.0% and 95.8% and that of gamma between 82.8% and 89.8%. CONCLUSIONS: An EPID-frame-based error detection process for VMAT deliveries was successfully designed and tested via simulations. The SCED method was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of relevant dose errors. Compared to a typical (3%, 3 mm) gamma analysis, the SCED method produced a higher detection rate for all introduced dose errors, identified errors in an earlier stage, displayed a higher robustness to noise variations, and indicated the error source.


Asunto(s)
Equipos y Suministros Eléctricos , Errores Médicos , Garantía de la Calidad de Atención de Salud/métodos , Radioterapia de Intensidad Modulada/instrumentación , Humanos , Errores Médicos/prevención & control , Fantasmas de Imagen , Dosificación Radioterapéutica , Factores de Tiempo
9.
Arterioscler Thromb Vasc Biol ; 36(4): 673-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26891740

RESUMEN

OBJECTIVE: To understand the anatomy and physiology of ascending aortic aneurysms in angiotensin II-infused ApoE(-/-) mice. APPROACH AND RESULTS: We combined an extensive in vivo imaging protocol (high-frequency ultrasound and contrast-enhanced microcomputed tomography at baseline and after 3, 10, 18, and 28 days of angiotensin II infusion) with synchrotron-based ultrahigh resolution ex vivo imaging (phase contrast X-ray tomographic microscopy) in n=47 angiotensin II-infused mice and 6 controls. Aortic regurgitation increased significantly over time, as did the luminal volume of the ascending aorta. In the samples that were scanned ex vivo, we observed one or several focal dissections, with the largest located in the outer convex aspect of the ascending aorta. The volume of the dissections moderately correlated to the volume of the aneurysm as measured in vivo (r(2)=0.46). After 3 days of angiotensin II infusion, we found an interlaminar hematoma in 7/12 animals, which could be linked to an intimal tear. There was also a significant increase in single laminar ruptures, which may have facilitated a progressive enlargement of the focal dissections over time. At later time points, the hematoma was resorbed and the medial and adventitial thickness increased. Fatal transmural dissection occurred in 8/47 mice at an early stage of the disease, before adventita remodeling. CONCLUSIONS: We visualized and quantified the dissections that lead to ascending aortic aneurysms in angiotensin II-infused mice and provided unique insight into the temporal evolution of these lesions.


Asunto(s)
Aorta/patología , Aneurisma de la Aorta Abdominal/patología , Disección Aórtica/patología , Rotura de la Aorta/patología , Remodelación Vascular , Disección Aórtica/inducido químicamente , Disección Aórtica/diagnóstico por imagen , Angiotensina II , Animales , Aorta/diagnóstico por imagen , Aorta/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Rotura de la Aorta/inducido químicamente , Rotura de la Aorta/diagnóstico por imagen , Insuficiencia de la Válvula Aórtica/etiología , Aortografía/métodos , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Dilatación Patológica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Tejido Elástico/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo , Ultrasonografía Doppler de Pulso , Microtomografía por Rayos X
10.
Cardiovasc Res ; 105(2): 213-22, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25538157

RESUMEN

AIMS: In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS: We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION: Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.


Asunto(s)
Aneurisma Roto/patología , Angiotensina II/farmacología , Aorta Torácica/patología , Aneurisma de la Aorta Abdominal/patología , Disección Aórtica/patología , Dilatación Patológica/tratamiento farmacológico , Angiotensina II/administración & dosificación , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...