Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008553

RESUMEN

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Asunto(s)
Benzoatos/farmacología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X/métodos , Humanos , Isoenzimas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica/fisiología , Relación Estructura-Actividad , Termodinámica , Microambiente Tumoral/efectos de los fármacos , Bencenosulfonamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...