Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0298857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696375

RESUMEN

High-cost DNA extraction procedures pose significant challenges for budget-constrained laboratories. To address this, we introduce OpenCell, an economical, open-source, 3-in-1 laboratory device that combines the functionalities of a bead homogenizer, a microcentrifuge, and a vortex mixer. OpenCell utilizes modular attachments that magnetically connect to a central rotating brushless motor. This motor couples to an epicyclic gearing mechanism, enabling efficient bead homogenization, vortex mixing, and centrifugation within one compact unit. OpenCell's design incorporates multiple redundant safety features, ensuring both the device's and operator's safety. Additional features such as RPM measurement, programmable timers, battery operation, and optional speed control make OpenCell a reliable and reproducible laboratory instrument. In our study, OpenCell successfully isolated DNA from Spinacia oleracea (spinach), with an average yield of 2.3 µg and an A260/A280 ratio of 1.77, demonstrating its effectiveness for downstream applications such as Polymerase Chain Reaction (PCR) amplification. With its compact size (20 cm x 28 cm x 6.7 cm) and lightweight design (0.8 kg), comparable to the size and weight of a laptop, OpenCell is portable, making it an attractive component of a 'lab-in-a-backpack' for resource-constrained environments in low-and-middle-income countries and synthetic biology in remote field stations. Leveraging the accessibility of 3D printing and off-the-shelf components, OpenCell can be manufactured and assembled at a low unit cost of less than $50, providing an affordable alternative to expensive laboratory equipment costing over $4000. OpenCell aims to overcome the barriers to entry in synthetic biology research and contribute to the growing collection of frugal and open hardware.


Asunto(s)
ADN , ADN/aislamiento & purificación , Diseño de Equipo , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/economía , Reacción en Cadena de la Polimerasa/instrumentación , ADN de Plantas/aislamiento & purificación , ADN de Plantas/genética
2.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37808818

RESUMEN

High-cost DNA extraction procedures pose significant challenges for budget-constrained laboratories. To address this, we introduce OpenCell, an economical, open-source, 3-in-1 laboratory device that combines the functionalities of a bead homogenizer, a microcentrifuge, and a vortex mixer. OpenCell utilizes modular attachments that magnetically connect to a central rotating brushless motor. This motor couples to an epicyclic gearing mechanism, enabling efficient bead homogenization, vortex mixing, and centrifugation within one compact unit. OpenCell's design incorporates multiple redundant safety features, ensuring both the device's and operator's safety. Additional features such as RPM measurement, programmable timers, battery operation, and optional speed control make OpenCell a reliable and reproducible laboratory instrument. In our study, OpenCell successfully isolated DNA from Spinacia oleracea (spinach), with an average yield of 2.3 µg and an A260/A280 ratio of 1.77, demonstrating its effectiveness for downstream applications such as Polymerase Chain Reaction (PCR) amplification. With its compact size (20 cm x 28 cm x 6.7 cm) and lightweight design (0.8 kg), comparable to the size and weight of a laptop, OpenCell is portable, making it an attractive component of a 'lab-in-a-backpack' for resource-constrained environments in low-and-middle-income countries and synthetic biology in remote field stations. Leveraging the accessibility of 3D printing and off-the-shelf components, OpenCell can be manufactured and assembled at a low unit cost of less than $50, providing an affordable alternative to expensive laboratory equipment costing over $4000. OpenCell aims to overcome the barriers to entry in synthetic biology research and contribute to the growing collection of frugal and open hardware.

3.
ACS Synth Biol ; 12(10): 2909-2921, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37699423

RESUMEN

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by simply adding water and DNA to freeze-dried crude extracts of non-pathogenic Escherichia coli. We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a "build-your-own" activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high-school students in their classrooms─and at home─without professional laboratory equipment. This work promises to catalyze access to interactive synthetic biology education opportunities.


Asunto(s)
Biología Sintética , Calidad del Agua , Humanos , Biología Sintética/educación
4.
bioRxiv ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711593

RESUMEN

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by just-adding-water and DNA to freeze-dried crude extracts of Escherichia coli . We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a 'build-your-own' activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high school students in their classrooms - and at home - without professional laboratory equipment or researcher oversight. This work promises to catalyze access to interactive synthetic biology education opportunities.

5.
PLoS Biol ; 18(1): e3000589, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922526

RESUMEN

Electroporation is a basic yet powerful method for delivering small molecules (RNA, DNA, drugs) across cell membranes by application of an electrical field. It is used for many diverse applications, from genetically engineering cells to drug- and DNA-based vaccine delivery. Despite this broad utility, the high cost of electroporators can keep this approach out of reach for many budget-conscious laboratories. To address this need, we develop a simple, inexpensive, and handheld electroporator inspired by and derived from a common household piezoelectric stove lighter. The proposed "ElectroPen" device can cost as little as 23 cents (US dollars) to manufacture, is portable (weighs 13 g and requires no electricity), can be easily fabricated using 3D printing, and delivers repeatable exponentially decaying pulses of about 2,000 V in 5 ms. We provide a proof-of-concept demonstration by genetically transforming plasmids into Escherichia coli cells, showing transformation efficiency comparable to commercial devices, but at a fraction of the cost. We also demonstrate the potential for rapid dissemination of this approach, with multiple research groups across the globe validating the ease of construction and functionality of our device, supporting the potential for democratization of science through frugal tools. Thus, the simplicity, accessibility, and affordability of our device holds potential for making modern synthetic biology accessible in high school, community, and resource-poor laboratories.


Asunto(s)
Electroporación/instrumentación , Técnicas de Transferencia de Gen/instrumentación , Análisis Costo-Beneficio , Electricidad , Electroporación/economía , Diseño de Equipo/economía , Escherichia coli , Técnicas de Transferencia de Gen/economía , Humanos , Laboratorios/economía , Materiales Manufacturados/economía , Áreas de Pobreza , Impresión Tridimensional , Transformación Bacteriana , Transportes
6.
Nat Commun ; 10(1): 5514, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797936

RESUMEN

Bacterial biosensors can enable programmable, selective chemical production, but difficulties incorporating metabolic pathways into complex sensor circuits have limited their development and applications. Here we overcome these challenges and present the development of fast-responding, tunable sensor cells that produce different pigmented metabolites based on extracellular concentrations of zinc (a critical micronutrient). We create a library of dual-input synthetic promoters that decouple cell growth from zinc-specific metabolite production, enabling visible cell coloration within 4 h. Using additional transcriptional and metabolic control methods, we shift the response thresholds by an order of magnitude to measure clinically relevant zinc concentrations. The resulting sensor cells report zinc concentrations in individual donor serum samples; we demonstrate that they can provide results in a minimal-equipment fashion, serving as the basis for a field-deployable assay for zinc deficiency. The presented advances are likely generalizable to the creation of other types of sensors and diagnostics.


Asunto(s)
Técnicas Biosensibles/instrumentación , Escherichia coli/metabolismo , Redes y Vías Metabólicas , Zinc/análisis , Técnicas Biosensibles/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Espectrometría de Fluorescencia , Zinc/sangre
7.
PLoS Biol ; 17(5): e3000251, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112539

RESUMEN

The centrifuge is an essential tool for many aspects of research and medical diagnostics. However, conventional centrifuges are often inaccessible outside of standard laboratory settings, such as remote field sites, because they require a constant external power source and can be prohibitively costly in resource-limited settings and Science, technology, engineering, and mathematics (STEM)-focused programs. Here we present the 3D-Fuge, a 3D-printed hand-powered centrifuge, as a novel alternative to standard benchtop centrifuges. Based on the design principles of a paper-based centrifuge, this 3D-printed instrument increases the volume capacity to 2 mL and can reach hand-powered centrifugation speeds up to 6,000 rpm. The 3D-Fuge devices presented here are capable of centrifugation of a wide variety of different solutions such as spinning down samples for biomarker applications and performing nucleotide extractions as part of a portable molecular lab setup. We introduce the design and proof-of-principle trials that demonstrate the utility of low-cost 3D-printed centrifuges for use in remote field biology and educational settings.


Asunto(s)
Centrifugación/instrumentación , Biología Molecular , Impresión Tridimensional/instrumentación , Genómica , Nanoporos , Nucleótidos/aislamiento & purificación , Proteínas/análisis , Bosque Lluvioso , Manejo de Especímenes , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...