Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(32): 13624-9, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19666535

RESUMEN

Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Homeodominio/metabolismo , Luz , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Mutación/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de la radiación , Nicotiana , Factores de Transcripción/genética
2.
Mol Plant ; 1(1): 75-83, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20031916

RESUMEN

In etiolated seedlings, light perceived by phytochrome promotes the expression of light-harvesting chlorophyll a/b protein of photosystem II (Lhcb) genes. However, excess of photosynthetically active radiation can reduce Lhcb expression. Here, we investigate the convergence and divergence of phytochrome, high-light stress and abscisic acid (ABA) signaling, which could connect these processes. Etiolated Arabidopsis thaliana seedlings bearing an Lhcb promoter fused to a reporter were exposed to continuous far-red light to activate phytochrome and not photosynthesis, and treated with ABA. We identified a cis-acting region of the promoter required for down-regulation by ABA. This region contains a CCAC sequence recently found to be necessary for ABI4-binding to an Lhcb promoter. However, we did not find a G-box-binding core motif often associated with the ABI4-binding site in genes promoted by light and repressed by ABI4. Mutations involving this motif also impaired the responses to reduced water potential, the response to high photosynthetic light and the response to methyl viologen but not the response to low temperature or to Norflurazon. We propose a model based on current and previous findings, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression. Since the mutation that affects high-light and methyl viologen responses does not affect phytochrome-mediated responses, the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz , Estrés Oxidativo/fisiología , Fotosíntesis/genética , Fitocromo/metabolismo , Transcripción Genética , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Oscuridad , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Complejos de Proteína Captadores de Luz/efectos de los fármacos , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/efectos de la radiación , Piridazinas/farmacología , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de la radiación , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
3.
Plant Cell ; 18(11): 2919-28, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17114357

RESUMEN

In plants, light signals caused by the presence of neighbors accelerate stem growth and flowering and induce a more erect position of the leaves, a developmental strategy known as shade-avoidance syndrome. In addition, mutations in the photoreceptors that mediate shade-avoidance responses enhance disease susceptibility in Arabidopsis thaliana. Here, we describe the Arabidopsis constitutive shade-avoidance1 (csa1) mutant, which shows a shade-avoidance phenotype in the absence of shade and enhanced growth of a bacterial pathogen. The csa1 mutant has a T-DNA inserted within the second exon of a Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) gene, which leads to the production of a truncated mRNA. Arabidopsis plants transformed with the truncated TIR-NBS-LRR gene recapitulate the mutant phenotype, indicating that csa1 is a dominant-negative mutation that interferes with phytochrome signaling. TIR-NBS-LRR proteins have been implicated in defense responses in plants. RPS4, the closest homolog of CSA1, confers resistance to Pseudomonas syringae and complements the csa1 mutant phenotype, indicating that responses to pathogens and neighbors share core-signaling components in Arabidopsis. In Drosophila melanogaster and Caenorhabditis elegans, TIR domain proteins are implicated in both development and immunity. Thus, the dual role of the TIR domain is conserved across kingdoms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Luz , Morfogénesis , Mutación/genética , Proteínas/metabolismo , Animales , Arabidopsis/microbiología , Proteínas de Arabidopsis/aislamiento & purificación , ADN Bacteriano/metabolismo , Expresión Génica/efectos de la radiación , Hipocótilo/microbiología , Hipocótilo/efectos de la radiación , Inmunidad/efectos de la radiación , Proteínas Repetidas Ricas en Leucina , Mutagénesis Insercional , Fenotipo , Fitocromo B/metabolismo , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína/efectos de la radiación , Proteínas/genética , Pseudomonas syringae/fisiología , Plantones/microbiología , Plantones/efectos de la radiación , Transducción de Señal/efectos de la radiación
4.
Plant Cell ; 17(9): 2507-16, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16024587

RESUMEN

Phytochromes mediate a profound developmental shift when dark-grown seedlings are exposed to light. Here, we show that a subset of genes is upregulated in phytochrome B (phyB) mutants even before dark-grown Arabidopsis thaliana seedlings are exposed to light. Most of these genes bear the RY cis motif, which is a binding site of the transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3), and the phyB mutation also enhances ABI3 expression. These changes in transcriptome have physiological consequences, because seedlings of the abi3 mutant showed enhanced responses to pulses of far-red light, whereas ABI3 overexpressers exhibited the opposite pattern. Seedlings of the wild type derived from seeds germinated in full darkness showed enhanced expression of genes bearing the RY cis motif and reduced responses to far-red light. We propose that, via changes in ABI3 expression, light, perceived mainly by phyB in the seed, generates a downstream transdevelopmental phase signal that preconditions the seedling to its most likely environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo B/metabolismo , Plantones/metabolismo , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotoperiodo , Regiones Promotoras Genéticas , Factores de Transcripción , Transcripción Genética
5.
Plant Cell ; 14(7): 1591-603, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12119377

RESUMEN

Phytochrome A signaling shows two photobiologically discrete outputs: so-called very-low-fluence responses (VLFR) and high-irradiance responses (HIR). By modifying previous screening protocols, we isolated two Arabidopsis mutants retaining VLFR and lacking HIR. Phytochrome A negatively or positively regulates phytochrome B signaling, depending on light conditions. These mutants retained the negative but lacked the positive regulation. Both mutants carry the novel phyA-302 allele, in which Glu-777 (a residue conserved in angiosperm phytochromes) changed to Lys in the PAS2 motif of the C-terminal domain. The phyA-302 mutants showed a 50% reduction in phytochrome A levels in darkness, but this difference was compensated for by greater stability under continuous far-red light. phyA-302:green fluorescent protein fusion proteins showed normal translocation from the cytosol to the nucleus under continuous far-red light but failed to produce nuclear spots, suggesting that nuclear speckles could be involved in HIR signaling and phytochrome A degradation. We propose that the PAS2 domain of phytochrome A is necessary to initiate signaling in HIR but not in VLFR, likely via interaction with a specific partner.


Asunto(s)
Mutación Missense/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Células Fotorreceptoras , Fitocromo/genética , Factores de Transcripción , Alelos , Antocianinas/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis , Sitios de Unión/genética , Transporte Biológico/efectos de la radiación , Secuencia Conservada/genética , Oscuridad , Prueba de Complementación Genética , Germinación , Proteínas Fluorescentes Verdes , Hipocótilo/crecimiento & desarrollo , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Proteínas Nucleares/efectos de la radiación , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/efectos de la radiación , Fitocromo/metabolismo , Fitocromo/efectos de la radiación , Fitocromo A , Fitocromo B , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/efectos de la radiación , Semillas/crecimiento & desarrollo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA