Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2278, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145187

RESUMEN

DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.


Asunto(s)
Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mieloma Múltiple/genética , Mutación/genética , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteína del Factor Nuclear 45/metabolismo , Mapas de Interacción de Proteínas/genética
2.
Biochem Biophys Res Commun ; 546: 178-184, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33592502

RESUMEN

APOBEC3B (A3B) is a cytosine deaminase that converts cytosine to uracil in single-stranded DNA. Cytosine-to-thymine and cytosine-to-guanine base substitution mutations in trinucleotide motifs (APOBEC mutational signatures) were found in various cancers including lymphoid hematological malignancies such as multiple myeloma and A3B has been shown to be an enzymatic source of mutations in those cancers. Although the importance of A3B is being increasingly recognized, it is unclear how A3B expression is regulated in cancer cells as well as normal cells. To answer these fundamental questions, we analyzed 1276 primary myeloma cells using single-cell RNA-sequencing (scRNA-seq) and found that A3B was preferentially expressed at the G2/M phase, in sharp contrast to the expression patterns of other APOBEC3 genes. Consistently, we demonstrated that A3B protein was preferentially expressed at the G2/M phase in myeloma cells by cell sorting. We also demonstrated that normal blood cells expressing A3B were also enriched in G2/M-phase cells by analyzing scRNA-seq data from 86,493 normal bone marrow mononuclear cells. Furthermore, we revealed that A3B was expressed mainly in plasma cells, CD10+ B cells and erythroid cells, but not in granulocyte-macrophage progenitors. A3B expression profiling in normal blood cells may contribute to understanding the defense mechanism of A3B against viruses, and partially explain the bias of APOBEC mutational signatures in lymphoid but not myeloid malignancies. This study identified the cells and cellular phase in which A3B is highly expressed, which may help reveal the mechanisms behind carcinogenesis and cancer heterogeneity, as well as the biological functions of A3B in normal blood cells.


Asunto(s)
División Celular/genética , Citidina Desaminasa/genética , Fase G2/genética , Antígenos de Histocompatibilidad Menor/genética , Linfocitos B/metabolismo , Células Cultivadas , Células Eritroides/metabolismo , Fase G1/genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Neprilisina/metabolismo , Células Plasmáticas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , RNA-Seq , Fase S/genética , Análisis de la Célula Individual
3.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504604

RESUMEN

The cure for HIV-1 is currently stalled by our inability to specifically identify and target latently infected cells. HIV-1 viral RNA/DNA or viral proteins are recognized by cellular mechanisms and induce interferon responses in virus producing cells, but changes in latently infected cells remain unknown. HIVGKO contains a GFP reporter under the HIV-1 promoter and an mKO2 reporter under the internal EF1α promoter. This viral construct enables direct identification of HIV-1 both productively and latently infected cells. In this study we aim to identify specific cellular transcriptional responses triggered by HIV-1 entry and integration using Cap Analysis of Gene Expression (CAGE).We deep sequenced CAGE tags in uninfected, latently and productively infected cells and compared their differentially expressed transcription start site (TSS) profiles. Virus producing cells had differentially expressed TSSs related to T-cell activation and apoptosis when compared to uninfected cells or latently infected cells. Surprisingly, latently infected cells had only 33 differentially expressed TSSs compared to uninfected cells. Among these, SPP1 and APOE were down-regulated in latently infected cells. SPP1 or APOE knockdown in Jurkat T cells increased susceptibility to HIVGKO infection, suggesting that they have anti-viral properties. Components of the PI3K/mTOR pathway, MLST8, 4EBP and RPS6, were significant TSSs in productively infected cells, and S6K phosphorylation was increased compared to latently infected cells, suggesting that mTOR pathway activity plays a role in establishing the latent reservoir. These findings indicate that HIV-1 entry and integration do not trigger unique transcriptional responses when infection becomes latent.Importance: Latent HIV-1 infection is established as early as the first viral exposure and remains the most important barrier in obtaining the cure for HIV-1 infection. Here, we used CAGE to compare the transcriptional landscape of latently infected cells with that of non-infected or productively infected cells. We found that latently infected cells and non-infected cells show quite similar transcriptional profiles. Our data suggest that T-cells cannot recognize incoming viral components nor the integrated HIV-1 genome when infection remains latent. These findings should guide future research into widening our approaches to identify and target latent HIV-1 infected cells.

4.
PLoS One ; 15(1): e0223463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31914134

RESUMEN

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) DNA cytosine deaminase 3B (A3B) is a DNA editing enzyme which induces genomic DNA mutations in multiple myeloma and in various other cancers. APOBEC family proteins are highly homologous so it is especially difficult to investigate the biology of specifically A3B in cancer cells. To easily and comprehensively investigate A3B function in myeloma cells, we used CRISPR/Cas9 to generate A3B reporter cells that contain 3×FLAG tag and IRES-EGFP sequences integrated at the end of the A3B gene. These reporter cells stably express 3xFLAG tagged A3B and the reporter EGFP and this expression is enhanced by known stimuli, such as PMA. Conversely, shRNA knockdown of A3B decreased EGFP fluorescence and 3xFLAG tagged A3B protein levels. We screened a series of anticancer treatments using these cell lines and identified that most conventional therapies, such as antimetabolites or radiation, exacerbated endogenous A3B expression, but recent molecular targeted therapeutics, including bortezomib, lenalidomide and elotuzumab, did not. Furthermore, chemical inhibition of ATM, ATR and DNA-PK suppressed EGFP expression upon treatment with antimetabolites. These results suggest that DNA damage triggers A3B expression through ATM, ATR and DNA-PK signaling.


Asunto(s)
Citidina Desaminasa/genética , Daño del ADN/genética , Antígenos de Histocompatibilidad Menor/genética , Mieloma Múltiple/genética , Anticuerpos Monoclonales Humanizados/farmacología , Bortezomib/farmacología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Núcleo Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Lenalidomida/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/radioterapia , Mutación/genética , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Ácidos Polimetacrílicos/farmacología , ARN Interferente Pequeño/genética , Radiación , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...