Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 15: 739411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126055

RESUMEN

Pathological hallmarks of Alzheimer's disease (AD) include deposition and accumulation of amyloid- ß (Aß), neurofibrillary tangle formation, and neuronal loss. Pathogenesis of presymptomatic disease stages remains elusive, although studies suggest that the early structural and functional alterations likely occur at neuronal dendritic spines. Presymptomatic alterations may also affect different CNS cell types. However, specific contributions of these cell types as cause or consequence of pathology are difficult to study in vivo. There is a shortage of relatively simple, well-defined, and validated in vitro models that allow a straightforward interpretation of results and recapitulate aspects of pathophysiology. For instance, dissecting the AD-related processes (e.g., neurotoxicity vs. synaptotoxicity) may be difficult with the common cell-based systems such as neuronal cell lines or primary neurons. To investigate and characterize the impact of reactive astrocytes on neuronal morphology in the context of AD-related cues, we modified an in vitro co-culture assay of primary mouse neurons and primary mouse astrocytes based on the so-called Banker "sandwich" co-culture assay. Here, we provide a simple and modular assay with fully differentiated primary mouse neurons to study the paracrine interactions between the neurons and the astrocytes in the co-culture setting. Readouts were obtained from both cell types in our assay. Astrocyte feeder cells were pre-exposed to neuroinflammatory conditions by means of Aß42, Aß40, or lipopolysaccharide (LPS). Non-cell autonomous toxic effects of reactive astrocytes on neurons were assessed using the Sholl analysis to evaluate the dendritic complexity, whereas synaptic puncta served as a readout of synaptotoxicity. Here, we show that astrocytes actively contribute to the phenotype of the primary neurons in an AD-specific context, emphasizing the role of different cell types in AD pathology. The cytokine expression pattern was significantly altered in the treated astrocytes. Of note, the impact of reactive astrocytes on neurons was highly dependent on the defined cell ratios. Our co-culture system is modular, of low cost, and allows us to probe aspects of neurodegeneration and neuroinflammation between the two major CNS cell types, neurons, and astrocytes, under well-defined experimental conditions. Our easy-to-follow protocol, including work-flow figures, may also provide a methodological outline to study the interactions of astrocytes and neurons in the context of other diseases in the future.

2.
Regul Pept ; 118(1-2): 111-7, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-14759564

RESUMEN

Gastrin-induced release of calcitonin from medullary thyroid carcinomas (MTC) is based on the expression of the cholecystokinin(2)-receptor (CCK(2)R) in these tumors. Recently, we have shown that the CCK(2)R is expressed not only in MTC but also in C-cells within the normal thyroid gland. The functions of the CCK(2)R in MTC and C-cells are largely unknown. We therefore explored the effects of gastrin-induced CCK(2)R stimulation in the highly differentiated MTC cell line, TT. CCK(2)R expression in TT-cells is detectable by RT-PCR as well as immunocytochemistry. Stimulation of the CCK(2)R by gastrin induces immediate release of calcitonin from TT-cells. Moreover, quantitative (LightCycler) RT-PCR demonstrates that gastrin stimulates transcription of the calcitonin and chromogranin A genes in TT-cells. TT-cell proliferation, assessed by counting of viable cells and (3)H-thymidine uptake, is markedly increased by gastrin. This effect is inhibited by the CCK(2)R-specific antagonist L-365,260. Our findings suggest physiological functions for the CCK(2)R in calcitonin-secretion and gene expression as well as a pathophysiological role in MTC proliferation. CCK(2)R antagonists might have therapeutic potential in these tumors.


Asunto(s)
Calcitonina/metabolismo , Carcinoma Medular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor de Colecistoquinina B/fisiología , Neoplasias de la Tiroides/metabolismo , Calcitonina/genética , Carcinoma Medular/genética , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular Tumoral , Cromogranina A , Cromograninas/genética , Cromograninas/metabolismo , Gastrinas/farmacología , Humanos , Receptor de Colecistoquinina B/efectos de los fármacos , Receptor de Colecistoquinina B/genética , Neoplasias de la Tiroides/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...