Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470072

RESUMEN

BACKGROUND: Controlled environment agriculture, particularly vertical farms (VF), also called plant factories, is often claimed as a solution for global food security due to its ability to produce crops unaffected by weather or pests. In principle, essential macronutrients of the human diet, like protein, could technically be produced in VF. This aspect becomes relevant in the era of protein transition, marked by an increasing consumer interest in plant-based protein and environmental challenges faced by conventional farming. However, the real question is: what does the cultivation of protein crops in VF imply in terms of resource use? To address this, a study was conducted using a VF experiment focusing on two soybean cultivars. RESULTS: With a variable plant density to optimize area use, and because of the ability to have more crop cycles per year, protein yield per square metre of crop was about eight times higher than in the open field. Assuming soy as the only protein source in the diet, the resources needed to get total yearly protein requirement of a reference adult would be 20 m2 of crop area, 2.4 m3 of water and 16 MWh of electricity, versus 164 m2, 111 m3 and 0.009 MWh in the field. CONCLUSIONS: The study's results inform the debate on protein production and the efficiency of VF compared to conventional methods. With current electricity prices, it is unlikely to justify production of simple protein crops in VF or promote it as a solution to meet global protein needs. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Front Plant Sci ; 11: 592171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584743

RESUMEN

This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 µmol m-2 s-1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 µmol m-2 s-1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 µmol m-2 s-1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 µmol m-2 s-1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 µmol m-2 s-1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 µmol m-2 s-1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the "optimal" PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.

3.
Front Plant Sci ; 10: 1457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824526

RESUMEN

The EDEN ISS project has the objective to test key technologies and processes for higher plant cultivation with a focus on their application to long duration spaceflight. A mobile plant production facility was designed and constructed by an international consortium and deployed to the German Antarctic Neumayer Station III. Future astronaut crews, even if well-trained and provided with detailed procedures, cannot be expected to have the competencies needed to deal with all situations that will arise during a mission. Future space crews, as they are today, will be supported by expert backrooms on the ground. For future space-based greenhouses, monitoring the crops and the plant growth system increases system reliability and decreases the crew time required to maintain them. The EDEN ISS greenhouse incorporates a Plant Health Monitoring System to provide remote support for plant status assessment and early detection of plant stress or disease. The EDEN ISS greenhouse has the capability to automatically capture and distribute images from its suite of 32 high-definition color cameras. Collected images are transferred over a satellite link to the EDEN ISS Mission Control Center in Bremen and to project participants worldwide. Upon reception, automatic processing software analyzes the images for anomalies, evaluates crop performance, and predicts the days remaining until harvest of each crop tray. If anomalies or sub-optimal performance is detected, the image analysis system generates automatic warnings to the agronomist team who then discuss, communicate, or implement countermeasure options. A select number of Dual Wavelength Spectral Imagers have also been integrated into the facility for plant health monitoring to detect potential plant stress before it can be seen on the images taken by the high-definition color cameras. These imagers and processing approaches are derived from traditional space-based imaging techniques but permit new discoveries to be made in a facility like the EDEN ISS greenhouse in which, essentially, every photon of input and output can be controlled and studied. This paper presents a description of the EDEN ISS Plant Health Monitoring System, basic image analyses, and a summary of the results from the initial year of Antarctic operations.

4.
Sci Rep ; 9(1): 14127, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576006

RESUMEN

LED lighting in indoor farming systems allows to modulate the spectrum to fit plant needs. Red (R) and blue (B) lights are often used, being highly active for photosynthesis. The effect of R and B spectral components on lettuce plant physiology and biochemistry and resource use efficiency were studied. Five red:blue (RB) ratios (0.5-1-2-3-4) supplied by LED and a fluorescent control (RB = 1) were tested in six experiments in controlled conditions (PPFD = 215 µmol m-2 s-1, daylength 16 h). LED lighting increased yield (1.6 folds) and energy use efficiency (2.8 folds) as compared with fluorescent lamps. Adoption of RB = 3 maximised yield (by 2 folds as compared with RB = 0.5), also increasing leaf chlorophyll and flavonoids concentrations and the uptake of nitrogen, phosphorus, potassium and magnesium. As the red portion of the spectrum increased, photosystem II quantum efficiency decreased but transpiration decreased more rapidly, resulting in increased water use efficiency up to RB = 3 (75 g FW L-1 H2O). The transpiration decrease was accompanied by lower stomatal conductance, which was associated to lower stomatal density, despite an increased stomatal size. Both energy and land surface use efficiency were highest at RB ≥ 3. We hereby suggest a RB ratio of 3 for sustainable indoor lettuce cultivation.


Asunto(s)
Lactuca/fisiología , Fotosíntesis/fisiología , Clorofila/metabolismo , Color , Lactuca/metabolismo , Luz , Iluminación/métodos , Fotoperiodo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
5.
Front Plant Sci ; 10: 305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918510

RESUMEN

Indoor plant cultivation can result in significantly improved resource use efficiency (surface, water, and nutrients) as compared to traditional growing systems, but illumination costs are still high. LEDs (light emitting diodes) are gaining attention for indoor cultivation because of their ability to provide light of different spectra. In the light spectrum, red and blue regions are often considered the major plants' energy sources for photosynthetic CO2 assimilation. This study aims at identifying the role played by red:blue (R:B) ratio on the resource use efficiency of indoor basil cultivation, linking the physiological response to light to changes in yield and nutritional properties. Basil plants were cultivated in growth chambers under five LED light regimens characterized by different R:B ratios ranging from 0.5 to 4 (respectively, RB0.5, RB1, RB2, RB3, and RB4), using fluorescent lamps as control (CK1). A photosynthetic photon flux density of 215 µmol m-2 s-1 was provided for 16 h per day. The greatest biomass production was associated with LED lighting as compared with fluorescent lamp. Despite a reduction in both stomatal conductance and PSII quantum efficiency, adoption of RB3 resulted in higher yield and chlorophyll content, leading to improved use efficiency for water and energy. Antioxidant activity followed a spectral-response function, with optimum associated with RB3. A low RB ratio (0.5) reduced the relative content of several volatiles, as compared to CK1 and RB ≥ 2. Moreover, mineral leaf concentration (g g-1 DW) and total content in plant (g plant-1) were influences by light quality, resulting in greater N, P, K, Ca, Mg, and Fe accumulation in plants cultivated with RB3. Contrarily, nutrient use efficiency was increased in RB ≤ 1. From this study it can be concluded that a RB ratio of 3 provides optimal growing conditions for indoor cultivation of basil, fostering improved performances in terms of growth, physiological and metabolic functions, and resources use efficiency.

6.
Sci Hortic ; 235: 270-278, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29780200

RESUMEN

This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work done in preparation of the deployment of a mobile test facility for vegetable production of fresh food at the Neumayer III Antarctic research station. A selection of vegetable crops was grown under varying light and temperature conditions to quantify crop yield response to climate factors that determine resource requirement of the production system. Crops were grown at 21 °C or 25 °C under light treatments varying from 200 to 600 µmol m-2  s-1 and simulated the dusk and dawn light spectrum. Fresh food biomass was harvested as spread harvesting (lettuce), before and after regrowth (herbs) and at the end of cultivation. Lettuce and red mustard responded well to increasing light intensities, by 35-90% with increasing light from 200 to 600 µmol m-2 s-1, while the other crops responded more variably. However, the quality of the leafy greens often deteriorated at higher light intensities. The fruit biomass of both determinate tomato and cucumber increased by 8-15% from 300 to 600 µmol m-2 s-1. With the increase in biomass, the number of tomato fruits also increased, while the number of cucumber fruits decreased, resulting in heavier individual fruits. Increasing the temperature had varied effects on production. While in some cases the production increased, regrowth of herbs often lagged behind in the 25 °C treatment. In terms of fresh food production, the most can be expected from lettuce, cucumber, radish, then tomato, although the 2 fruit vegetables require a considerable amount of crop management. Spread harvesting had a large influence on the amount of harvested biomass per unit area. In particular, yield of the 3 lettuce cultivars and spinach was ca. 400% than single harvesting. Increasing plant density and applying spread harvesting increased fresh food production. This information will be the basis for determining crop growth recipes and management to maximize the amount of fresh food available, in view of the constraints of space and energy requirement of such a production system.

7.
Int J Biometeorol ; 62(7): 1211-1220, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29532255

RESUMEN

Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (gF) derives a canopy conductance (gW) from measured transpiration by inverting the coupled transpiration model to yield gW = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled gW and D is gW = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of gF and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of gF. With these premises, the derived gW is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of gF. Calculations with random inputs that ensure independence between gF and D reproduce published experimental scatter plots that display a dependence between gW and D in contradiction with the premises. For this reason, the dependence of gW on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.


Asunto(s)
Transpiración de Plantas , Presión de Vapor , Humedad , Vapor , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...