Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 112(6): e35409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38786580

RESUMEN

The challenge of integrating hydroxyapatite nanoparticles (nHAp) with polymers is hindered by the conflict between the hydrophilic and hygroscopic properties of nHAp and the hydrophobic properties of polymers. This conflict particularly affects the materials when calcium phosphates, including nHAp, are used as a filler in composites in thermal processing applications such as 3D printing with fused filament fabrication (FFF). To overcome this, we propose a one-step surface modification of nHAp with calcium stearate monolayer. Moreover, to build the scaffold with suitable mechanical strength, we tested the addition of nHAp with diverse morphology-spherical, plate- and rod-like nanoparticles. Our analysis showed that the composite of polycaprolactone (PCL) reinforced with nHAp with rod and plate morphologies modified with calcium stearate monolayer exhibited a significant increase in compressive strength. However, composites with spherical nHAp added to PCL showed a significant reduction in compressive modulus and compressive strength, but both parameters were within the applicability range of hard tissue scaffolds. None of the tested composite scaffolds showed cytotoxicity in L929 murine fibroblasts or MG-63 human osteoblast-like cells, supporting the proliferation of the latter. Additionally, PCL/nHAp scaffolds reinforced with spherical nHAp caused osteoactivation of bone marrow human mesenchymal stem cells, as indicated by alkaline phosphatase activity and COL1, RUNX2, and BGLAP expression. These results suggest that the calcium stearate monolayer on the surface of the nHAp particles allows the production of polymer/nHAp composites suitable for hard tissue engineering and personalized implant production in 3D printing using the FFF technique.


Asunto(s)
Durapatita , Nanopartículas , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Durapatita/química , Durapatita/farmacología , Ratones , Animales , Humanos , Nanopartículas/química , Línea Celular , Poliésteres/química , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ensayo de Materiales
2.
Front Oncol ; 13: 1259314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053658

RESUMEN

Introduction: Malignant mesothelioma is a rare and aggressive form of cancer. Despite improvements in cancer treatment, there are still no curative treatment modalities for advanced stage of the malignancy. The aim of this study was to evaluate the anti-tumor efficacy of a novel combinatorial therapy combining AdV5/3-D24-ICOSL-CD40L, an oncolytic vector, with an anti-PD-1 monoclonal antibody. Methods: The efficacy of the vector was confirmed in vitro in three mesothelioma cell lines - H226, Mero-82, and MSTO-211H, and subsequently the antineoplastic properties in combination with anti-PD-1 was evaluated in xenograft H226 mesothelioma BALB/c and humanized NSG mouse models. Results and discussion: Anticancer efficacy was attributed to reduced tumour volume and increased infiltration of tumour infiltrating lymphocytes, including activated cytotoxic T-cells (GrB+CD8+). Additionally, a correlation between tumour volume and activated CD8+ tumour infiltrating lymphocytes was observed. These findings were confirmed by transcriptomic analysis carried out on resected human tumour tissue, which also revealed upregulation of CD83 and CRTAM, as well as several chemokines (CXCL3, CXCL9, CXCL11) in the tumour microenvironment. Furthermore, according to observations, the combinatorial therapy had the strongest effect on reducing mesothelin and MUC16 levels. Gene set enrichment analysis suggested that the combinatorial therapy induced changes to the expression of genes belonging to the "adaptive immune response" gene ontology category. Combinatorial therapy with oncolytic adenovirus with checkpoint inhibitors may improve anticancer efficacy and survival by targeted cancer cell destruction and triggering of immunogenic cell death. Obtained results support further assessment of the AdV5/3-D24-ICOSL-CD40L in combination with checkpoint inhibitors as a novel therapeutic perspective for mesothelioma treatment.

3.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687530

RESUMEN

The textile market is a vast industry that utilizes antimicrobial polymeric materials, including various types of fabrics, for medical and personal protection applications. Therefore, this study focused on examining four types of antimicrobial fillers, namely, metal oxides (zinc, titanium, copper) and nanosilver, as fillers in Polyamide 12 fibers. These fillers can be applied in the knitting or weaving processes to obtain woven polymeric fabrics for medical applications. The production of the fibers in this study involved a two-step approach: twin-screw extrusion and melt spinning. The resulting fibers were then characterized for their thermal properties (TGA, DSC), mechanical performance (tensile test, DMA), and antifungal activity. The findings of the study indicated that all of the fibers modified with fillers kill Candida albicans. However, the fibers containing a combination of metal oxides and silver showed significantly higher antifungal activity (reduction rate % R = 86) compared to the fibers with only a mixture of metal oxides (% R = 21). Furthermore, the inclusion of metal oxides and nanosilver in the Polyamide 12 matrix hindered the formation of the crystal phase and decreased slightly the thermal stability and mechanical properties, especially for the composites with nanosilver. It was attributed to their worse dispersion and the presence of agglomerates.

4.
Cells ; 12(8)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190096

RESUMEN

Mast cells (MCs) are the immune cells distributed throughout nearly all tissues, mainly in the skin, near blood vessels and lymph vessels, nerves, lungs, and the intestines. Although MCs are essential to the healthy immune response, their overactivity and pathological states can lead to numerous health hazards. The side effect of mast cell activity is usually caused by degranulation. It can be triggered by immunological factors, such as immunoglobulins, lymphocytes, or antigen-antibody complexes, and non-immune factors, such as radiation and pathogens. An intensive reaction of mast cells can even lead to anaphylaxis, one of the most life-threatening allergic reactions. What is more, mast cells play a role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. The mechanisms of the mast cell actions are still poorly understood, making it difficult to develop therapies for their pathological condition. This review focuses on the possible therapies targeting mast cell degranulation, anaphylaxis, and MC-derived tumors.


Asunto(s)
Anafilaxia , Humanos , Mastocitos , Degranulación de la Célula , Piel
5.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046608

RESUMEN

In clinical trials, adenovirus vectors (AdVs) are commonly used platforms for human gene delivery therapy. High genome capacity and flexibility in gene organization make HAdVs suitable for cloning. Recent advancements in molecular techniques have influenced the development of genetically engineered adenovirus vectors showing therapeutic potential. Increased molecular understanding of the benefits and limitations of HAdVs in preclinical research and clinical studies is a crucial point in the engineering of refined oncolytic vectors. This review presents HAdV species (A-G) used in oncotherapy. We describe the adenovirus genome organizations and modifications, the possibilities oncolytic viruses offer, and their current limitations. Ongoing and ended clinical trials based on oncolytic adenoviruses are presented. This review provides a broad overview of the current knowledge of oncolytic therapy. HAdV-based strategies targeting tumors by employing variable immune modifiers or delivering immune stimulatory factors are of great promise in the field of immune oncologyy This approach can change the face of the fight against cancer, supplying the medical tools to defeat tumors more selectively and safely.

6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769342

RESUMEN

Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α' isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR.


Asunto(s)
Adenocarcinoma del Pulmón , Tetrahidrofolato Deshidrogenasa , Humanos , Fosforilación , Tetrahidrofolato Deshidrogenasa/química , Timidilato Sintasa/metabolismo
7.
BioTechnologia (Pozn) ; 104(4): 403-419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213479

RESUMEN

New prophylactic vaccine platforms are imperative to combat respiratory infections. The efficacy of T and B memory cell-mediated protection, generated through the adenoviral vector, was tested to assess the effectiveness of the new adenoviral-based platforms for infectious diseases. A combination of adenovirus AdV1 (adjuvant), armed with costimulatory ligands (ICOSL and CD40L), and rRBD (antigen: recombinant nonglycosylated spike protein rRBD) was used to promote the differentiation of T and B lymphocytes. Adenovirus AdV2 (adjuvant), without ligands, in combination with rRBD, served as a control. In vitro T-cell responses to the AdV1+rRBD combination revealed that CD8+ platform-specific T-cells increased (37.2 ± 0.7% vs. 23.1 ± 2.1%), and T-cells acted against SARS-CoV-2 via CD8+TEMRA (50.0 ± 1.3% vs. 36.0 ± 3.2%). Memory B cells were induced after treatment with either AdV1+rRBD (84.1 ± 0.8% vs. 82.3 ± 0.4%) or rRBD (94.6 ± 0.3% vs. 82.3 ± 0.4%). Class-switching from IgM and IgD to isotype IgG following induction with rRBD+Ab was observed. RNA-seq profiling identified gene expression patterns related to T helper cell differentiation that protect against pathogens. The analysis determined signaling pathways controlling the induction of protective immunity, including the MAPK cascade, adipocytokine, cAMP, TNF, and Toll-like receptor signaling pathway. The AdV1+rRBD formulation induced IL-6, IL-8, and TNF. RNA-seq of the VERO E6 cell line showed differences in the apoptosis gene expression stimulated with the platforms vs. mock. In conclusion, AdV1+rRBD effectively generates T and B memory cell-mediated protection, presenting promising results in producing CD8+ platform-specific T cells and isotype-switched IgG memory B cells. The platform induces protective immunity by controlling the Th1, Th2, and Th17 cell differentiation gene expression patterns. Further studies are required to confirm its effectiveness.

8.
J Cancer ; 13(9): 2884-2892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912004

RESUMEN

Cancer cells employ various mechanisms to evade and suppress anti-cancer immune responses generating a "cold" immunosuppressive tumour microenvironment. Oncolytic viruses are a promising tool to convert tumour immunosuppression to immunomodulation and improve the efficacy of cancer treatment. Emerging preclinical and clinical findings confirm that oncolytic viruses act in a multimodal scheme, triggering lyses, immunogenic cell death and finally inducing anti-cancer immune responses. In this paper, we tested the local administration of a novel oncolytic adenovirus AdV-D24-ICOSL-CD40L expressing co-stimulatory molecules ICOSL and CD40L to induce the production of tumour infiltrating lymphocytes to the site of injection. Subsequently, in immunocompetent mouse models, we studied possible correlation between tumour infiltrates and anti-cancer efficacy. Described results showed that the delivery of oncolytic viruses encoding immunomodulatory transgenes in combination with anti-PD1 resulted in synergistic inhibition of both melanoma and mesothelioma tumours. Importantly anti-cancer effect positively correlated with cytotoxic CD8+ tumour-infiltrating lymphocytes exerting a central role in the tumour volume control thus generating beneficial outcomes that will undoubtedly provide new insights into possible future treatment strategies to combat cancer. Altogether our findings highlight the importance of oncolytic vectors able to modulate anti-cancer immune responses that can correlate with efficacy in solid malignancies.

9.
Polymers (Basel) ; 14(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893987

RESUMEN

The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1-5 wt % of the nanoparticles of zinc, copper, and titanium oxides prepared by a twin-screw extrusion process and injection moulding. A satisfactory biocidal activity of polyamide 12 nanocomposites was obtained thanks to homogenously dispersed metal oxides in the polymer matrix and the wettability of the metal oxides by PA12. At 4 wt % of the metal oxides, the contact angles were the lowest and it resulted in obtaining the highest reduction rate of the Escherichia coli (87%), Candida albicans (53%), and Herpes simplex 1 (90%). The interactions of the nanocomposites with the fibroblasts show early apoptosis (11.85-27.79%), late apoptosis (0.81-5.04%), and necrosis (0.18-0.31%), which confirms the lack of toxicity of used metal oxides. Moreover, the used oxides affect slightly the thermal and rheological properties of PA12, which was determined by oscillatory rheology, thermogravimetric analysis, and differential scanning calorimetry.

10.
Front Oncol ; 12: 916839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35785199

RESUMEN

Malignant mesothelioma is a rare and aggressive cancer that develops in the thin layer surrounding the mesothelium and is mainly caused by asbestos exposure. Despite improvements in patient prognosis with conventional cancer treatments, such as surgery, chemotherapy, and radiotherapy, there are still no curative treatment modalities for advanced disease. In recent years, new therapeutic avenues have been explored. Improved understanding of the mechanisms underlying the dynamic tumor interaction with the immune system has led to the development of immunotherapeutic approaches. Numerous recent clinical trials have shown a desire to develop more effective treatments that can be used to fight against the disease. Immune checkpoint inhibitors, oncolytic adenoviruses, and their combination represent a promising strategy that can be used to synergistically overcome immunosuppression in the mesothelioma tumor microenvironment. This review provides a synthesized overview of the current state of knowledge on new therapeutic options for mesothelioma with a focus on the results of clinical trials conducted in the field.

11.
Materials (Basel) ; 15(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35329754

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has completely disrupted people's lives. All over the world, many restrictions and precautions have been introduced to reduce the spread of coronavirus disease 2019 (COVID-19). Ultraviolet C (UV-C) radiation is widely used to disinfect rooms, surfaces, and medical tools; however, this paper presents novel results obtained for modern UV-C light-emitting diodes (LEDs), examining their effect on inhibiting the multiplication of viruses. The main goal of the work was to investigate how to most effectively use UV-C LEDs to inactivate viruses. We showed that UV-C radiation operating at a 275 nm wavelength is optimal for germicidal effectiveness in a time exposure (25−48 s) study: >3 log-reduction with the Kärber method and >6 log-reduction with UV spectrophotometry were noted. We used real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) to reliably estimate virus infectivity reduction after 275 nm UV-C disinfection. The relative quantification (RQ) of infectious particles detected after 40−48 s distinctly decreased. The irradiated viral RNAs were underexpressed compared to the untreated control virial amplicon (estimated as RQ = 1). In conclusion, this work provides the first experimental data on 275 nm UV-C in the inactivation of human coronavirus OC43 (HoV-OC43), showing the most potent germicidal effect without hazardous effect.

12.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216365

RESUMEN

Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.


Asunto(s)
Homeostasis/inmunología , Infecciones/inmunología , Mastocitos/inmunología , Neoplasias/inmunología , Animales , Humanos , Inmunidad/inmunología , Inflamación/inmunología
13.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576932

RESUMEN

Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure-activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e-f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160-4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-ß-d-glucosaminide and 4-nitrophenyl-ß-d-N,N',N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing ß-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Bencimidazoles/química , Animales , Antifúngicos/síntesis química , Antifúngicos/toxicidad , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Bencimidazoles/toxicidad , Biopelículas/efectos de los fármacos , Candida albicans/citología , Candida albicans/efectos de los fármacos , Pared Celular/efectos de los fármacos , Quitina/metabolismo , Chlorocebus aethiops , Cryptococcus neoformans/citología , Cryptococcus neoformans/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Células Vero
14.
Molecules ; 26(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443595

RESUMEN

A newly synthetized series of N-phenacyl derivatives of 2-mercaptobenzoxazole, including analogues of 5-bromo- and 5,7-dibromobenzoxazole, were screened against Candida strains and the action mechanism was evaluated. 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanone (5d), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichloro-phenyl)ethanone (5i), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,4,6-trichlorophenyl)ethanone (5k) and 2-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]-1-phenylethanone (6a) showed anti-C. albicans SC5314 activity, where 5d displayed MICT = 16 µg/mL (%R = 100) and a weak anti-proliferative activity against the clinical strains: C. albicans resistant to azoles (Itr and Flu) and C. glabrata. Derivatives 5k and 6a displayed MICP = 16 µg/mL and %R = 64.2 ± 10.6, %R = 88.0 ± 9.7, respectively, against the C. albicans isolate. Derivative 5i was the most active against C. glabrata (%R = 53.0 ± 3.5 at 16 µg/mL). Benzoxazoles displayed no MIC against C. glabrata. Benzoxazoles showed a pleiotropic action mode: (1) the total sterols content was perturbed; (2) 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(3,4-dichlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichlorophenyl)ethanol (8h-i) at the lowest fungistatic conc. inhibited the efflux of the Rho123 tracker during the membrane transport process; (3) mitochondrial respiration was affected/inhibited by the benzoxazoles: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-chlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanol 8c-d and 8i. Benzoxazoles showed comparable activity to commercially available azoles due to (1) the interaction with exogenous ergosterol, (2) endogenous ergosterol synthesis blocking as well as (3) membrane permeabilizing properties typical of AmB. Benzoxazoles display a broad spectrum of anti-Candida activity and action mode towards the membrane without cross-resistance with AmB; furthermore, they are safe to mammals.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Candida/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
15.
Pharmaceutics ; 13(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919827

RESUMEN

Malignant melanoma, an aggressive form of skin cancer, has a low five-year survival rate in patients with advanced disease. Immunotherapy represents a promising approach to improve survival rates among patients at advanced stage. Herein, the aim of the study was to design and produce, by using engineering tools, a novel oncolytic adenovirus AdV-D24- inducible co-stimulator ligand (ICOSL)-CD40L expressing potent co-stimulatory molecules enhancing clinical efficacy through the modulation of anti-cancer immune responses. Firstly, we demonstrated the vector's identity and genetic stability by restriction enzyme assay and sequencing, then, by performing in vitro and in vivo pre-clinical studies we explored the anti-cancer efficacy of the virus alone or in combination with anti PD-1 inhibitor in human melanoma cell lines, i.e., MUG Mel-1 and MUG Mel-2, and in immunocompetent C57BL/6 melanoma B16V mouse model. We showed that both monotherapy and combination approaches exhibit enhanced anti-cancer ability and immunogenic cell death in in vitro settings. Furthermore, AdV-D24-ICOSL-CD40L combined with anti PD-1 revealed a fall in tumor volume and 100% survival in in vivo context, thus suggesting enhanced efficacy and survival via complementary anti-cancer properties of those agents in melanoma therapy. Collectively, the novel oncolytic vector AdV-D24-ICOSL-CD40L alone or in combination with anticancer drugs, such as check point inhibitors, may open novel therapeutic perspectives for the treatment of melanoma.

16.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092131

RESUMEN

In this review, we discuss the use of oncolytic viruses and checkpoint inhibitors in cancer immunotherapy in melanoma, with a particular focus on combinatory therapies. Oncolytic viruses are promising and novel anti-cancer agents, currently under investigation in many clinical trials both as monotherapy and in combination with other therapeutics. They have shown the ability to exhibit synergistic anticancer activity with checkpoint inhibitors, chemotherapy, radiotherapy. A coupling between oncolytic viruses and checkpoint inhibitors is a well-accepted strategy for future cancer therapies. However, eradicating advanced cancers and tailoring the immune response for complete tumor clearance is an ongoing problem. Despite current advances in cancer research, monotherapy has shown limited efficacy against solid tumors. Therefore, current improvements in virus targeting, genetic modification, enhanced immunogenicity, improved oncolytic properties and combination strategies have a potential to widen the applications of immuno-oncology (IO) in cancer treatment. Here, we summarize the strategy of combinatory therapy with an oncolytic vector to combat melanoma and highlight the need to optimize current practices and improve clinical outcomes.

17.
Bioorg Med Chem Lett ; 30(23): 127545, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931913

RESUMEN

Candida albicans CNB1 plays a role in the response in vitro and in vivo to stress generated by PB-WUT-01, namely 1,3-dimethyl-7-(2-((1-(3-(perbromo-2H-benzo[d][1,2,3]triazol-2-yl)propyl)-1H-1,2,3-triazol-4-yl)methoxy)propyl)-1H-purine-2,6(3H,7H)-dione. The antifungal mechanism involved the calcineurin pathway-regulated genes SAP9-10. Galleria mellonella treated with PB-WUT-01 (at 0.64 µg/mg) showed limited candidiasis and remained within the highest survival rates. The molecular mode of action of PB-WUT-01 was rationalized by in silico docking studies toward both human and C. albicans calcineurin A (CNA) and calcineurin B (CNB) complexes, respectively. PB-WUT-01 acting as a calcineurin inhibitor in the C. albicans cells enhances the cells' susceptibility. Therefore it could be a suitable alternative treatment in patients with candidiasis.


Asunto(s)
Antifúngicos/farmacología , Inhibidores de la Calcineurina/farmacología , Calcineurina/metabolismo , Candida albicans/efectos de los fármacos , Teofilina/análogos & derivados , Animales , Antifúngicos/síntesis química , Antifúngicos/metabolismo , Apoptosis/efectos de los fármacos , Ácido Aspártico Endopeptidasas/metabolismo , Biopelículas/efectos de los fármacos , Inhibidores de la Calcineurina/síntesis química , Inhibidores de la Calcineurina/metabolismo , Candida albicans/fisiología , Chlorocebus aethiops , Proteínas Fúngicas/metabolismo , Larva/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Unión Proteica , Teofilina/metabolismo , Teofilina/farmacología , Células Vero
18.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872257

RESUMEN

BACKGROUND: The combination effect of 5-fluorouracil (5-FU) with either CX-4945 or a new inhibitor of protein kinase CK2, namely 14B (4,5,6,7-tetrabromo-1-(3-bromopropyl)-2-methyl-1H-benzimidazole), on the viability of MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines was studied. METHODS: Combination index (CI) values were determined using an MTT-based assay and the Chou-Talalay model. The effect of the tested drug combinations on pro-apoptotic properties and cell cycle progression was examined using flow cytometry. The activation of FAK, p38 MAPK, and ERK1/2 kinases and the expression of selected pro-apoptotic markers in MDA-MB-231 cell line after the combined treatment were evaluated by the western blot method. Confocal microscopy was used to examine actin network in MDA-MB-231. RESULTS: Our results showed that a synergistic effect (CI < 1) occurred in MDA-MB-231 after treatment with both combinations of 5-FU with 14B or CX-4945, whereas the combination of 5-FU and 14B evoked an antagonistic effect in MCF-7. We conclude that the synergistic interactions (CI < 1) observed for both the combinations of 5-FU and 14B or CX-4945 in MDA-MB-231 correlated with an activation of p38 MAPK, inhibition of FAK, increased expression of apoptogenic markers, prolongation of S-phase of cell cycle, and destabilization of actin network. CONCLUSIONS: The obtained results support the recent observation that CK2 inhibitors can improve 5-FU-based anticancer therapy and FAK kinase can be an attractive molecular target in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fluorouracilo/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Naftiridinas/farmacología , Fenazinas/farmacología
19.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531955

RESUMEN

The current appearance of the new SARS coronavirus 2 (SARS-CoV-2) and it quickly spreading across the world poses a global health emergency. The serious outbreak position is affecting people worldwide and requires rapid measures to be taken by healthcare systems and governments. Vaccinations represent the most effective strategy to prevent the epidemic of the virus and to further reduce morbidity and mortality with long-lasting effects. Nevertheless, currently there are no licensed vaccines for the novel coronaviruses. Researchers and clinicians from all over the world are advancing the development of a vaccine against novel human SARS-CoV-2 using various approaches. Herein, we aim to present and discuss the progress and prospects in the field of vaccine research towards SARS-CoV-2 using adenovirus (AdV) replication deficient-based strategies, with a comprehension that may support research and combat this recent world health emergency.

20.
J Fungi (Basel) ; 6(2)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365492

RESUMEN

The secretory pathway in Candida albicans involves the protein translocation into the lumen of the endoplasmic reticulum and transport to the Golgi complex, where proteins undergo posttranslational modifications, including glycosylation and proteolysis. The Golgi-resident Kex2 protease is involved in such processing and disruption of its encoding gene affected virulence and dimorphism. These previous studies were performed using cells without URA3 or with URA3 ectopically placed into the KEX2 locus. Since these conditions are known to affect the cellular fitness and the host-fungus interaction, here we generated a kex2Δ null mutant strain with URA3 placed into the neutral locus RPS1. The characterization of this strain showed defects in the cell wall composition, with a reduction in the N-linked mannan content, and the increment in the levels of O-linked mannans, chitin, and ß-glucans. The defects in the mannan content are likely linked to changes in Golgi-resident enzymes, as the α-1,2-mannosyltransferase and α-1,6-mannosyltransferase activities were incremented and reduced, respectively. The mutant cells also showed reduced ability to stimulate cytokine production and phagocytosis by human mononuclear cells and macrophages, respectively. Collectively, these data showed that loss of Kex2 affected the cell wall composition, the protein glycosylation pathways, and interaction with innate immune cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...