Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464305

RESUMEN

The G protein-coupled metabotropic glutamate receptors form homodimers and heterodimers with highly diverse responses to glutamate and varying physiological function. The molecular basis for this diversity remains poorly delineated. We employ molecular dynamics, single-molecule spectroscopy, and hydrogen-deuterium exchange to dissect the pathway of activation triggered by glutamate. We find that activation entails multiple loosely coupled steps and identify a novel pre-active intermediate whose transition to the active state forms dimer interactions that set signaling efficacy. Such subunit interactions generate functional diversity that differs across homodimers and heterodimers. The agonist-bound receptor is remarkably dynamic, with low occupancy of G protein-coupling conformations, providing considerable headroom for modulation of the landscape by allosteric ligands. Sites of sequence diversity within the dimerization interface and diverse coupling between activation rearrangements may contribute to precise decoding of glutamate signals and transients over broad spatial and temporal scales.

2.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370786

RESUMEN

N-methyl-D-aspartate receptors are ionotropic glutamate receptors that are integral to synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties, which support their individual physiological roles in the nervous system. To understand the conformational basis of this diversity, we assessed the conformation of the common GluN1 subunit in receptors with different GluN2 subunits using single-molecule fluorescence resonance energy transfer (smFRET). We established smFRET sensors in the ligand binding domain and modulatory amino-terminal domain to study an apo-like state and partially liganded activation intermediates, which have been elusive to structural analysis. Our results demonstrate a strong, subtype-specific influence of apo and glutamate-bound GluN2 subunits on GluN1 rearrangements, suggesting a conformational basis for the highly divergent levels of receptor activity, desensitization and agonist potency. Chimeric analysis reveals structural determinants that contribute to the subtype differences. Our study provides a framework for understanding GluN2-dependent functional properties and could open new avenues for subtype-specific modulation.

3.
Proc Natl Acad Sci U S A ; 120(43): e2311131120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844228

RESUMEN

Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.


Asunto(s)
Receptores Acoplados a Proteínas G , Pez Cebra , Animales , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Opsinas , Opsinas de Bastones , Neuronas , Cilios/fisiología
4.
J Am Chem Soc ; 145(34): 18778-18788, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37586061

RESUMEN

Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo
5.
Nat Commun ; 13(1): 229, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017509

RESUMEN

Neural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.


Asunto(s)
Diagnóstico por Imagen , Neurotransmisores/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Drosophila , Femenino , Unión Neuromuscular/metabolismo , Imagen Óptica , Terminales Presinápticos
6.
Nat Commun ; 12(1): 4775, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362914

RESUMEN

Dopamine controls diverse behaviors and their dysregulation contributes to many disorders. Our ability to understand and manipulate the function of dopamine is limited by the heterogenous nature of dopaminergic projections, the diversity of neurons that are regulated by dopamine, the varying distribution of the five dopamine receptors (DARs), and the complex dynamics of dopamine release. In order to improve our ability to specifically modulate distinct DARs, here we develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D). Our design selectively targets D1R/D5R receptor subtypes, most potently D1R (MP-D1ago), as shown in HEK293T cells. In vivo, we targeted dorsal striatal medium spiny neurons where the photo-activation of MP-D1ago increased movement initiation, although further work is required to assess the effects of MP-D1ago on neuronal function. Our method combines ligand and cell type-specificity with temporally precise and reversible activation of D1R to control specific aspects of movement. Our results provide a template for analyzing dopamine receptors.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Animales , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/química , Agonistas de Dopamina/farmacología , Femenino , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Transmisión Sináptica/fisiología
7.
Nat Commun ; 12(1): 2694, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976221

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors essential for synaptic plasticity and memory. Receptor activation involves glycine- and glutamate-stabilized closure of the GluN1 and GluN2 subunit ligand binding domains that is allosterically regulated by the amino-terminal domain (ATD). Using single molecule fluorescence resonance energy transfer (smFRET) to monitor subunit rearrangements in real-time, we observe a stable ATD inter-dimer distance in the Apo state and test the effects of agonists and antagonists. We find that GluN1 and GluN2 have distinct gating functions. Glutamate binding to GluN2 subunits elicits two identical, sequential steps of ATD dimer separation. Glycine binding to GluN1 has no detectable effect, but unlocks the receptor for activation so that glycine and glutamate together drive an altered activation trajectory that is consistent with ATD dimer separation and rotation. We find that protons exert allosteric inhibition by suppressing the glutamate-driven ATD separation steps, and that greater ATD separation translates into greater rotation and higher open probability.


Asunto(s)
Conformación Proteica , Multimerización de Proteína , Receptores de N-Metil-D-Aspartato/química , Regulación Alostérica , Transferencia Resonante de Energía de Fluorescencia/métodos , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glicina/química , Glicina/metabolismo , Células HEK293 , Humanos , Cinética , Microscopía Confocal , Modelos Moleculares , Unión Proteica , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
8.
J Am Chem Soc ; 141(29): 11522-11530, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31291105

RESUMEN

G protein-coupled receptors (GPCRs) are membrane proteins that play important roles in biology. However, our understanding of their function in complex living systems is limited because we lack tools that can target individual receptors with sufficient precision. State-of-the-art approaches, including DREADDs, optoXRs, and PORTL gated-receptors, control GPCR signaling with molecular, cell type, and temporal specificity. Nonetheless, these tools are based on engineered non-native proteins that may (i) express at nonphysiological levels, (ii) localize and turnover incorrectly, and/or (iii) fail to interact with endogenous partners. Alternatively, membrane-anchored ligands (t-toxins, DARTs) target endogenous receptors with molecular and cell type specificity but cannot be turned on and off. In this study, we used a combination of chemistry, biology, and light to control endogenous metabotropic glutamate receptor 2 (mGluR2), a Family C GPCR, in primary cortical neurons. mGluR2 was rapidly, reversibly, and selectively activated with photoswitchable glutamate tethered to a genetically targeted-plasma membrane anchor (membrane anchored Photoswitchable Orthogonal Remotely Tethered Ligand; maPORTL). Photoactivation was tuned by adjusting the length of the PORTL as well as the expression level and geometry of the membrane anchor. Our findings provide a template for controlling endogenous GPCRs with cell type specificity and high spatiotemporal precision.


Asunto(s)
Biología Molecular/métodos , Receptores de Glutamato Metabotrópico/genética , Aminoácidos/farmacología , Animales , Compuestos Azo/química , Membrana Celular/metabolismo , Ácido Glutámico/química , Células HEK293 , Humanos , Ligandos , Luz , Neuronas/metabolismo , Procesos Fotoquímicos , Ingeniería de Proteínas/métodos , Ratas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xantenos/farmacología
9.
Nat Commun ; 9(1): 1112, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535310

RESUMEN

Kevin J. Cao and Richard H. Kramer, who developed extended release with beta cyclodextrin, were inadvertently omitted from the author list and author contributions section of this Article. These errors have now been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 8(1): 1862, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192252

RESUMEN

Retinitis pigmentosa results in blindness due to degeneration of photoreceptors, but spares other retinal cells, leading to the hope that expression of light-activated signaling proteins in the surviving cells could restore vision. We used a retinal G protein-coupled receptor, mGluR2, which we chemically engineered to respond to light. In retinal ganglion cells (RGCs) of blind rd1 mice, photoswitch-charged mGluR2 ("SNAG-mGluR2") evoked robust OFF responses to light, but not in wild-type retinas, revealing selectivity for RGCs that have lost photoreceptor input. SNAG-mGluR2 enabled animals to discriminate parallel from perpendicular lines and parallel lines at varying spacing. Simultaneous viral delivery of the inhibitory SNAG-mGluR2 and excitatory light-activated ionotropic glutamate receptor LiGluR yielded a distribution of expression ratios, restoration of ON, OFF and ON-OFF light responses and improved visual acuity. Thus, SNAG-mGluR2 restores patterned vision and combinatorial light response diversity provides a new logic for enhanced-acuity retinal prosthetics.


Asunto(s)
Luz , Células Fotorreceptoras de Vertebrados/metabolismo , Ingeniería de Proteínas , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/genética , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Visión Ocular/fisiología , Agudeza Visual , Animales , Modelos Animales de Enfermedad , Ratones , Células Fotorreceptoras de Vertebrados/fisiología , Receptores Ionotrópicos de Glutamato , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Retinitis Pigmentosa
11.
J Am Chem Soc ; 139(51): 18522-18535, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29166564

RESUMEN

Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/farmacología , Antagonistas de los Receptores de Dopamina D2/efectos de la radiación , Agonismo Inverso de Drogas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/efectos de la radiación , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efectos de la radiación , Sitios de Unión , Cisteína/química , Dopamina/metabolismo , Humanos , Ligandos , Receptores de Dopamina D1/antagonistas & inhibidores
12.
Cell Res ; 25(8): 963-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26138675

RESUMEN

Calcium flux through store-operated calcium entry is a major regulator of intracellular calcium homeostasis and various calcium signaling pathways. Two key components of the store-operated calcium release-activated calcium channel are the Ca(2+)-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. Following calcium depletion from the endoplasmic reticulum, STIM1 undergoes conformational changes that unmask an Orai1-activating domain called CAD. CAD binds to two sites in Orai1, one in the N terminal and one in the C terminal. Most previous studies suggested that gating is initiated by STIM1 binding at the Orai1 N-terminal site, just proximal to the TM1 pore-lining segment, and that binding at the C terminal simply anchors STIM1 within reach of the N terminal. However, a recent study had challenged this view and suggested that the Orai1 C-terminal region is more than a simple STIM1-anchoring site. In this study, we establish that the Orai1 C-terminal domain plays a direct role in gating. We identify a linker region between TM4 and the C-terminal STIM1-binding segment of Orai1 as a key determinant that couples STIM1 binding to gating. We further find that Proline 245 in TM4 of Orai1 is essential for stabilizing the closed state of the channel. Taken together with previous studies, our results suggest a dual-trigger mechanism of Orai1 activation in which binding of STIM1 at the N- and C-terminal domains of Orai1 induces rearrangements in proximal membrane segments to open the channel.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales de Calcio/química , Proteínas F-Box , Células HEK293 , Humanos , Activación del Canal Iónico , Proteína ORAI1 , Molécula de Interacción Estromal 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA