Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 590(7847): 580-586, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627813

RESUMEN

Reinforcement learning promises to solve complex sequential-decision problems autonomously by specifying a high-level reward function only. However, reinforcement learning algorithms struggle when, as is often the case, simple and intuitive rewards provide sparse1 and deceptive2 feedback. Avoiding these pitfalls requires a thorough exploration of the environment, but creating algorithms that can do so remains one of the central challenges of the field. Here we hypothesize that the main impediment to effective exploration originates from algorithms forgetting how to reach previously visited states (detachment) and failing to first return to a state before exploring from it (derailment). We introduce Go-Explore, a family of algorithms that addresses these two challenges directly through the simple principles of explicitly 'remembering' promising states and returning to such states before intentionally exploring. Go-Explore solves all previously unsolved Atari games and surpasses the state of the art on all hard-exploration games1, with orders-of-magnitude improvements on the grand challenges of Montezuma's Revenge and Pitfall. We also demonstrate the practical potential of Go-Explore on a sparse-reward pick-and-place robotics task. Additionally, we show that adding a goal-conditioned policy can further improve Go-Explore's exploration efficiency and enable it to handle stochasticity throughout training. The substantial performance gains from Go-Explore suggest that the simple principles of remembering states, returning to them, and exploring from them are a powerful and general approach to exploration-an insight that may prove critical to the creation of truly intelligent learning agents.

2.
Artif Life ; 26(2): 274-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271631

RESUMEN

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Asunto(s)
Algoritmos , Biología Computacional , Creatividad , Vida , Evolución Biológica
3.
Artif Life ; 25(3): 232-235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31397603

RESUMEN

Rather than acting as a review or analysis of the field, this essay focuses squarely on the motivations for investigating open-endedness and the opportunities it opens up. It begins by contemplating the awesome accomplishments of evolution in nature and the profound implications if such a process could be ignited on a computer. Some of the milestones in our understanding so far are then discussed, finally closing by highlighting the grand challenge of formalizing open-endedness as a computational process that can be encoded as an algorithm. The main contribution is to articulate why open-endedness deserves a place alongside artificial intelligence as one of the great computational challenges, and opportunities, of our time.


Asunto(s)
Inteligencia Artificial , Modelos Teóricos , Algoritmos , Evolución Biológica , Biología Computacional
4.
Artif Life ; 25(2): 93-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31150285

RESUMEN

Nature's spectacular inventiveness, reflected in the enormous diversity of form and function displayed by the biosphere, is a feature of life that distinguishes living most strongly from nonliving. It is, therefore, not surprising that this aspect of life should become a central focus of artificial life. We have known since Darwin that the diversity is produced dynamically, through the process of evolution; this has led life's creative productivity to be called Open-Ended Evolution (OEE) in the field. This article introduces the second of two special issues on current research in OEE and provides an overview of the contents of both special issues. Most of the work was presented at a workshop on open-ended evolution that was held as a part of the 2018 Conference on Artificial Life in Tokyo, and much of it had antecedents in two previous workshops on open-ended evolution at artificial life conferences in Cancun and York. We present a simplified categorization of OEE and summarize progress in the field as represented by the articles in this special issue.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Biología Sintética
5.
Artif Life ; 24(3): 157-181, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30485140

RESUMEN

Many believe that an essential component for the discovery of the tremendous diversity in natural organisms was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g., offspring tend to have similar-size legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization is rarely reported in computational simulations of evolution, which deprives us of in silico examples of canalization to study and raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally, and it could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this article, we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be more modular and hierarchical than expected by chance, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.


Asunto(s)
Evolución Biológica , Simulación por Computador , Algoritmos , Genoma , Procesamiento de Imagen Asistido por Computador , Internet , Mutación , Selección Genética , Programas Informáticos
6.
Neural Netw ; 108: 48-67, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30142505

RESUMEN

Biological neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifelong learning. The interplay of these elements leads to the emergence of biological intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) employ simulated evolution in-silico to breed plastic neural networks with the aim to autonomously design and create learning systems. EPANN experiments evolve networks that include both innate properties and the ability to change and learn in response to experiences in different environments and problem domains. EPANNs' aims include autonomously creating learning systems, bootstrapping learning from scratch, recovering performance in unseen conditions, testing the computational advantages of particular neural components, and deriving hypotheses on the emergence of biological learning. Thus, EPANNs may include a large variety of different neuron types and dynamics, network architectures, plasticity rules, and other factors. While EPANNs have seen considerable progress over the last two decades, current scientific and technological advances in artificial neural networks are setting the conditions for radically new approaches and results. Exploiting the increased availability of computational resources and of simulation environments, the often challenging task of hand-designing learning neural networks could be replaced by more autonomous and creative processes. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and possible developments are presented.


Asunto(s)
Aprendizaje Automático/tendencias , Redes Neurales de la Computación , Plasticidad Neuronal , Simulación por Computador , Predicción , Humanos , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas
7.
Artif Life ; 22(3): 364-407, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472416

RESUMEN

We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994-when the first WebAL work appeared-up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010-2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area.


Asunto(s)
Internet , Modelos Biológicos , Biología Sintética , Vida , Investigación
8.
Artif Life ; 22(3): 408-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472417

RESUMEN

We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE-it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .


Asunto(s)
Evolución Biológica , Biología Sintética , Congresos como Asunto , México
9.
Artif Life ; 21(4): 432-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545161

RESUMEN

This article presents a lightweight platform for evolving two-dimensional artificial creatures. The aim of providing such a platform is to reduce the barrier to entry for researchers interested in evolving creatures for artificial life experiments. In effect the novel platform, which is inspired by the Sodarace construction set, makes it easy to set up creative scenarios that test the abilities of Sodarace-like creatures made of masses and springs. In this way it allows the researcher to focus on evolutionary algorithms and dynamics. The new indirectly encoded Sodarace (IESoR) system introduced in this article extends the original Sodarace by enabling the evolution of significantly more complex and regular creature morphologies. These morphologies are themselves encoded by compositional pattern-producing networks (CPPNs), an indirect encoding previously shown effective at encoding regularities and symmetries in structure. The capability of this lightweight system to facilitate research in artificial life is then demonstrated through both walking and jumping domains, in which IESoR discovers a wide breadth of strategies through novelty search with local competition.

10.
PLoS One ; 10(6): e0128654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030734

RESUMEN

The evolutionary origin of altruism is a long-standing puzzle. Numerous explanations have been proposed, most prominently based on inclusive fitness or group selection. One possibility that has not yet been considered is that new niches will be created disproportionately often when altruism appears, perhaps by chance, causing altruists to be over-represented in such new niches. This effect is a novel variant of group selection in which altruistic groups benefit by discovering unoccupied niches instead of by competing for the limited resources within a single niche. Both an analytical population genetics model and computational simulations support that altruism systematically arises due to this side effect of increased carrying capacity even when it is strongly selected against within any given niche. In fact, even when selection is very strongly negative and altruism does not develop in most populations, it can still be expected to be observed in a consistent fraction of species. The ecological structure provided by niches thereby may be sufficient for altruists to proliferate even if they are always at a disadvantage within each niche considered individually.


Asunto(s)
Altruismo , Evolución Molecular , Selección Genética/genética , Simulación por Computador , Genética de Población/métodos , Modelos Genéticos
11.
Artif Life ; 21(1): 21-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25514432

RESUMEN

An important goal in both artificial life and biology is uncovering the most general principles underlying life, which might catalyze both our understanding of life and engineering lifelike machines. While many such general principles have been hypothesized, conclusively testing them is difficult because life on Earth provides only a singular example from which to infer. To circumvent this limitation, this article formalizes an approach called radical reimplementation. The idea is to investigate an abstract biological hypothesis by intentionally reimplementing its main principles to diverge maximally from existing natural examples. If the reimplementation successfully exhibits properties resembling biology, it may support the underlying hypothesis better than an alternative example inspired more directly by nature. The approach thereby provides a principled alternative to a common tradition of defending and minimizing deviations from nature in artificial life. This work reviews examples that can be interpreted through the lens of radical reimplementation to yield potential insights into biology despite having purposely unnatural experimental setups. In this way, radical reimplementation can help renew the relevance of computational systems for investigating biological theory and can act as a practical philosophical tool to help separate the fundamental features of terrestrial biology from the epiphenomenal.

12.
PLoS One ; 8(4): e62186, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637999

RESUMEN

Why evolvability appears to have increased over evolutionary time is an important unresolved biological question. Unlike most candidate explanations, this paper proposes that increasing evolvability can result without any pressure to adapt. The insight is that if evolvability is heritable, then an unbiased drifting process across genotypes can still create a distribution of phenotypes biased towards evolvability, because evolvable organisms diffuse more quickly through the space of possible phenotypes. Furthermore, because phenotypic divergence often correlates with founding niches, niche founders may on average be more evolvable, which through population growth provides a genotypic bias towards evolvability. Interestingly, the combination of these two mechanisms can lead to increasing evolvability without any pressure to out-compete other organisms, as demonstrated through experiments with a series of simulated models. Thus rather than from pressure to adapt, evolvability may inevitably result from any drift through genotypic space combined with evolution's passive tendency to accumulate niches.


Asunto(s)
Evolución Biológica , Modelos Teóricos , Adaptación Biológica , Simulación por Computador , Evolución Molecular , Genotipo , Modelos Genéticos , Fenotipo , Selección Genética
13.
Artif Life ; 18(4): 331-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22938563

RESUMEN

Intelligence in nature is the product of living brains, which are themselves the product of natural evolution. Although researchers in the field of neuroevolution (NE) attempt to recapitulate this process, artificial neural networks (ANNs) so far evolved through NE algorithms do not match the distinctive capabilities of biological brains. The recently introduced hypercube-based neuroevolution of augmenting topologies (HyperNEAT) approach narrowed this gap by demonstrating that the pattern of weights across the connectivity of an ANN can be generated as a function of its geometry, thereby allowing large ANNs to be evolved for high-dimensional problems. Yet the positions and number of the neurons connected through this approach must be decided a priori by the user and, unlike in living brains, cannot change during evolution. Evolvable-substrate HyperNEAT (ES-HyperNEAT), introduced in this article, addresses this limitation by automatically deducing the node geometry from implicit information in the pattern of weights encoded by HyperNEAT, thereby avoiding the need to evolve explicit placement. This approach not only can evolve the location of every neuron in the network, but also can represent regions of varying density, which means resolution can increase holistically over evolution. ES-HyperNEAT is demonstrated through multi-task, maze navigation, and modular retina domains, revealing that the ANNs generated by this new approach assume natural properties such as neural topography and geometric regularity. Also importantly, ES-HyperNEAT's compact indirect encoding can be seeded to begin with a bias toward a desired class of ANN topographies, which facilitates the evolutionary search. The main conclusion is that ES-HyperNEAT significantly expands the scope of neural structures that evolution can discover.


Asunto(s)
Red Nerviosa/metabolismo , Redes Neurales de la Computación , Neuronas/metabolismo , Algoritmos , Inteligencia Artificial , Evolución Biológica , Simulación por Computador , Humanos , Aprendizaje
14.
Neural Netw ; 34: 28-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796669

RESUMEN

Synaptic plasticity is a major mechanism for adaptation, learning, and memory. Yet current models struggle to link local synaptic changes to the acquisition of behaviors. The aim of this paper is to demonstrate a computational relationship between local Hebbian plasticity and behavior learning by exploiting two traditionally unwanted features: neural noise and synaptic weight saturation. A modulation signal is employed to arbitrate the sign of plasticity: when the modulation is positive, the synaptic weights saturate to express exploitative behavior; when it is negative, the weights converge to average values, and neural noise reconfigures the network's functionality. This process is demonstrated through simulating neural dynamics in the autonomous emergence of fearful and aggressive navigating behaviors and in the solution to reward-based problems. The neural model learns, memorizes, and modifies different behaviors that lead to positive modulation in a variety of settings. The algorithm establishes a simple relationship between local plasticity and behavior learning by demonstrating the utility of noise and weight saturation. Moreover, it provides a new tool to simulate adaptive behavior, and contributes to bridging the gap between synaptic changes and behavior in neural computation.


Asunto(s)
Conducta , Aprendizaje , Modelos Neurológicos , Plasticidad Neuronal , Electricidad
15.
Evol Comput ; 19(2): 189-223, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20868264

RESUMEN

In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively misdirect search toward dead ends. This paper proposes an approach to circumventing deception that also yields a new perspective on open-ended evolution. Instead of either explicitly seeking an objective or modeling natural evolution to capture open-endedness, the idea is to simply search for behavioral novelty. Even in an objective-based problem, such novelty search ignores the objective. Because many points in the search space collapse to a single behavior, the search for novelty is often feasible. Furthermore, because there are only so many simple behaviors, the search for novelty leads to increasing complexity. By decoupling open-ended search from artificial life worlds, the search for novelty is applicable to real world problems. Counterintuitively, in the maze navigation and biped walking tasks in this paper, novelty search significantly outperforms objective-based search, suggesting the strange conclusion that some problems are best solved by methods that ignore the objective. The main lesson is the inherent limitation of the objective-based paradigm and the unexploited opportunity to guide search through other means.


Asunto(s)
Algoritmos , Evolución Biológica , Inteligencia Artificial
16.
Evol Comput ; 19(3): 373-403, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20964537

RESUMEN

For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others' images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems.


Asunto(s)
Algoritmos , Inteligencia Artificial , Diseño Asistido por Computadora , Conducta Cooperativa , Modelos Teóricos , Motor de Búsqueda/métodos , Simulación por Computador
17.
Neural Comput ; 22(7): 1860-98, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20235822

RESUMEN

Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.


Asunto(s)
Inteligencia Artificial , Simulación por Computador/tendencias , Red Nerviosa/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Animales , Evolución Biológica , Humanos
18.
Artif Life ; 15(2): 185-212, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19199382

RESUMEN

Research in neuroevolution-that is, evolving artificial neural networks (ANNs) through evolutionary algorithms-is inspired by the evolution of biological brains, which can contain trillions of connections. Yet while neuroevolution has produced successful results, the scale of natural brains remains far beyond reach. This article presents a method called hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) that aims to narrow this gap. HyperNEAT employs an indirect encoding called connective compositional pattern-producing networks (CPPNs) that can produce connectivity patterns with symmetries and repeating motifs by interpreting spatial patterns generated within a hypercube as connectivity patterns in a lower-dimensional space. This approach can exploit the geometry of the task by mapping its regularities onto the topology of the network, thereby shifting problem difficulty away from dimensionality to the underlying problem structure. Furthermore, connective CPPNs can represent the same connectivity pattern at any resolution, allowing ANNs to scale to new numbers of inputs and outputs without further evolution. HyperNEAT is demonstrated through visual discrimination and food-gathering tasks, including successful visual discrimination networks containing over eight million connections. The main conclusion is that the ability to explore the space of regular connectivity patterns opens up a new class of complex high-dimensional tasks to neuroevolution.


Asunto(s)
Evolución Biológica , Biología Computacional , Red Nerviosa/metabolismo , Alimentos , Percepción Visual/fisiología
19.
Artif Life ; 9(2): 93-130, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12906725

RESUMEN

A major challenge for evolutionary computation is to evolve phenotypes such as neural networks, sensory systems, or motor controllers at the same level of complexity as found in biological organisms. In order to meet this challenge, many researchers are proposing indirect encodings, that is, evolutionary mechanisms where the same genes are used multiple times in the process of building a phenotype. Such gene reuse allows compact representations of very complex phenotypes. Development is a natural choice for implementing indirect encodings, if only because nature itself uses this very process. Motivated by the development of embryos in nature, we define artificial embryogeny (AE) as the subdiscipline of evolutionary computation (EC) in which phenotypes undergo a developmental phase. An increasing number of AE systems are currently being developed, and a need has arisen for a principled approach to comparing and contrasting, and ultimately building, such systems. Thus, in this paper, we develop a principled taxonomy for AE. This taxonomy provides a unified context for long-term research in AE, so that implementation decisions can be compared and contrasted along known dimensions in the design space of embryogenic systems. It also allows predicting how the settings of various AE parameters affect the capacity to efficiently evolve complex phenotypes.


Asunto(s)
Clasificación , Modelos Genéticos , Redes Neurales de la Computación
20.
Evol Comput ; 10(2): 99-127, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12180173

RESUMEN

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Inteligencia Artificial , Humanos , Aprendizaje , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...