Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34240557

RESUMEN

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Herbivoria , Nutrientes
2.
Ecol Lett ; 23(10): 1442-1450, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32567139

RESUMEN

Seed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above-ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa
3.
Ecol Lett ; 9(1): 15-23, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16958864

RESUMEN

Although the distribution of plant species abundance in a Minnesota grassland was consistent with neutral theory, niche but not neutral mechanisms were supported by the ability of species traits to predict species abundances in three experimental grassland communities. In particular, data from 27 species grown in monoculture showed that species differed in a trait, R*, which is the level to which each species reduced the concentration of soil nitrate, the limiting soil nutrient and which is predicted to be inversely associated with competitive ability for nitrogen (N). In these N-limited habitats, species abundance ranks correlated with their predicted competitive ranks: low R* species, on average dominated. These correlations were significantly different than expected for neutral theory, which assumes the exchangeability of species traits. Additionally, we found that changes in relative abundance after environmental change (N-addition or disturbance) were not neutral but also were significantly associated with R*.


Asunto(s)
Ecosistema , Plantas/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Plantas/genética , Suelo/análisis , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...