Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(8): 4164-4173, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38351711

RESUMEN

Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in ß-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas Bacterianas/química , Bacillus subtilis/metabolismo , Estructura Secundaria de Proteína , Biopelículas , Matriz Extracelular de Sustancias Poliméricas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(45): e2312022120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903266

RESUMEN

The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.


Asunto(s)
Proteínas Bacterianas , Matriz Extracelular de Sustancias Poliméricas , Proteínas Bacterianas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Biopelículas , Bacillus subtilis/metabolismo , Simulación de Dinámica Molecular
3.
Microbiology (Reading) ; 169(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526065

RESUMEN

Biofilms are complex communities of microbes that are bound by an extracellular macromolecular matrix produced by the residents. Biofilms are the predominant form of microbial life in the natural environment and although they are the leading cause of chronic infections, they are equally deeply connected to our ability to bioremediate waste and toxic materials. Here we highlight the emergent properties of biofilm communities and explore notable biofilms before concluding by providing examples of their major impact on our health and both natural and built environments.


Asunto(s)
Biopelículas , Ambiente , Matriz Extracelular/metabolismo
4.
mBio ; 14(5): e0094823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650625

RESUMEN

IMPORTANCE: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Microbiology (Reading) ; 169(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289492

RESUMEN

Bacteria engage in competitive interactions with neighbours that can either be of the same or different species. Multiple mechanisms are deployed to ensure the desired outcome and one tactic commonly implemented is the production of specialised metabolites. The Gram-positive bacterium Bacillus subtilis uses specialized metabolites as part of its intra-species competition determinants to differentiate between kin and non-kin isolates. It is, however, unknown if the collection of specialized metabolites defines competitive fitness when the two isolates start as a close, interwoven community that grows into a densely packed colony biofilm. Moreover, the identity of specialized metabolites that have an active role in defining the outcome of an intra-species interaction has not been revealed. Here, we determine the competition outcomes that manifest when 21 environmental isolates of B. subtilis are individually co-incubated with the model isolate NCIB 3610 in a colony biofilm. We correlated these data with the suite of specialized metabolite biosynthesis clusters encoded by each isolate. We found that the epeXEPAB gene cluster was primarily present in isolates with a strong competitive phenotype. This cluster is responsible for producing the epipeptide EpeX. We demonstrated that EpeX is a competition determinant of B. subtilis in an otherwise isogenic context for NCBI 3610. However, when we competed the NCIB 3610 EpeX-deficient strain against our suite of environmental isolates we found that the impact of EpeX in competition is isolate-specific, as only one of the 21 isolates showed increased survival when EpeX was lacking. Taken together, we have shown that EpeX is a competition determinant used by B. subtilis that impacts intra-species interactions but only in an isolate-specific manner.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
6.
Mol Microbiol ; 120(2): 105-121, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380434

RESUMEN

Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.


Asunto(s)
Bacillus subtilis , Péptido Hidrolasas , Bacillus subtilis/genética , Endopeptidasas , Suelo
7.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865097

RESUMEN

The Bacillus subtilis extracellular biofilm matrix includes an exopolysaccharide that is critical for the architecture and function of the community. To date, our understanding of the biosynthetic machinery and the molecular composition of the exopolysaccharide of B. subtilis remains unclear and incomplete. This report presents synergistic biochemical and genetic studies built from a foundation of comparative sequence analyses targeted at elucidating the activities of the first two membrane-committed steps in the exopolysaccharide biosynthetic pathway. By taking this approach, we determined the nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in the B. subtilis biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first phosphoglycosyl transferase step using UDP-di- N -acetyl bacillosamine as phospho-sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in the pathway that utilizes the product of EpsL as an acceptor substrate and UDP- N -acetyl glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides at the reducing end of the growing exopolysaccharide unit. In doing so we provide the first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a Gram-positive bacterium. IMPORTANCE: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide synthesis pathway. Together our studies and approaches provide the foundation for the sequential characterization of the steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenol diphosphate-linked glycan substrates.

8.
NPJ Biofilms Microbiomes ; 8(1): 98, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528619

RESUMEN

A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.


Asunto(s)
Ácido Glutámico , Bacillus subtilis/genética , Biopelículas , Ácido Glutámico/metabolismo , Temperatura
9.
Open Biol ; 12(12): 220194, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36514980

RESUMEN

Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.


Asunto(s)
Biopelículas , Matriz Extracelular
10.
Biofilm ; 4: 100082, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36148433

RESUMEN

Single-species bacterial colony biofilms often present recurring morphologies that are thought to be of benefit to the population of cells within and are known to be dependent on the self-produced extracellular matrix. However, much remains unknown in terms of the developmental process at the single cell level. Here, we design and implement systematic time-lapse imaging and quantitative analyses of the growth of Bacillus subtilis colony biofilms. We follow the development from the initial deposition of founding cells through to the formation of large-scale complex structures. Using the model biofilm strain NCIB 3610, we examine the movement dynamics of the growing biomass and compare them with those displayed by a suite of otherwise isogenic matrix-mutant strains. Correspondingly, we assess the impact of an incomplete matrix on biofilm morphologies and sessile growth rate. Our results indicate that radial expansion of colony biofilms results from the division of bacteria at the biofilm periphery rather than being driven by swelling due to fluid intake. Moreover, we show that lack of exopolysaccharide production has a negative impact on cell division rate, and the extracellular matrix components act synergistically to give the biomass the structural strength to produce aerial protrusions and agar substrate-deforming ability.

11.
ISME J ; 16(6): 1512-1522, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121821

RESUMEN

Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells' potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/genética , Matriz Extracelular
12.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819371

RESUMEN

Our understanding of plant-microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants' large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant-microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of "first contact," before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant-microbe interactions.


Asunto(s)
Bacillus subtilis/metabolismo , Microscopía/métodos , Raíces de Plantas/microbiología , Rizosfera , Plantones/microbiología , Calibración , Ambiente , Diseño de Equipo , Fluorescencia , Procesamiento de Imagen Asistido por Computador , Lactuca , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Silicio , Suelo , Microbiología del Suelo , Temperatura
13.
Microbiology (Reading) ; 167(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34486975

RESUMEN

Biofilms are communities of bacteria that are attached to a surface and surrounded by an extracellular matrix. The extracellular matrix protects the community from stressors in the environment, making biofilms robust. The Gram-positive soil bacterium Bacillus subtilis, particularly the isolate NCIB 3610, is widely used as a model for studying biofilm formation. B. subtilis NCIB 3610 forms colony biofilms that are architecturally complex and highly hydrophobic. The hydrophobicity is linked, in part, to the localisation of the protein BslA at the surface of the biofilm, which provides the community with increased resistance to biocides. As most of our knowledge about B. subtilis biofilm formation comes from one isolate, it is unclear if biofilm hydrophobicity is a widely distributed feature of the species. To address this knowledge gap, we collated a library of B. subtilis soil isolates and acquired their whole genome sequences. We used our novel isolates to examine biofilm hydrophobicity and found that, although BslA is encoded and produced by all isolates in our collection, hydrophobicity is not a universal feature of B. subtilis colony biofilms. To test whether the matrix exopolymer poly γ-glutamic acid could be masking hydrophobicity in our hydrophilic isolates, we constructed deletion mutants and found, contrary to our hypothesis, that the presence of poly γ-glutamic acid was not the reason for the observed hydrophilicity. This study highlights the natural variation in the properties of biofilms formed by different isolates and the importance of using a more diverse range of isolates as representatives of a species.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Biopelículas , Matriz Extracelular , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Bacteriol ; 203(22): e0043121, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34460313

RESUMEN

Bacteria produce specialized metabolites with a range of functions. In this issue of the Journal of Bacteriology, Schoenborn et al. study the production and role of secondary metabolites during biofilm development and sporulation in Bacillus subtilis (A. A. Schoenborn, S. M. Yannarell, E. D. Wallace, H. Clapper, et al., J Bacteriol 203:e00337-21, 2021, https://doi.org/https://doi.org/10.1128/JB.00337-21). Most metabolites studied are produced during differentiation, and six are required for the development of biofilms and/or spores. The authors propose a model for the timing of production and role in differentiation exerted by each secondary metabolite.


Asunto(s)
Bacillus subtilis , Biopelículas
15.
Nat Rev Microbiol ; 19(9): 600-614, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33824496

RESUMEN

Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , Interacciones Microbianas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología
16.
J Bacteriol ; 203(14): e0019221, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33927051

RESUMEN

The dispersal of bacterial cells from a matured biofilm can be mediated either by active or passive mechanisms. In this issue of the Journal of Bacteriology, Nishikawa and Kobayashi demonstrate that the presence of calcium influences the dispersal of spores from the pellicle biofilm of Bacillus subtilis (M. Nishikawa and K. Kobayashi, J Bacteriol 203:e00114-21, 2021, https://doi.org/10.1128/JB.00114-21). The authors propose that temporal heterogeneity in matrix production and chelation of calcium by dipicolinic acid in spores weakens the biofilm matrix and causes passive dispersal.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas , Esporas Bacterianas/fisiología , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Calcio/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo
17.
Microorganisms ; 8(8)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727033

RESUMEN

Quorum sensing (QS) is often required for the formation of bacterial biofilms and is a popular target of biofilm control strategies. Previous studies implicate the ComQXPA quorum sensing system of Bacillus subtilis as a promoter of biofilm formation. Here, we report that ComX signaling peptide deficient mutants form thicker and more robust pellicle biofilms that contain chains of cells. We confirm that ComX positively affects the transcriptional activity of the PepsA promoter, which controls the synthesis of the major matrix polysaccharide. In contrast, ComX negatively controls the PtapA promoter, which drives the production of TasA, a fibrous matrix protein. Overall, the biomass of the mutant biofilm lacking ComX accumulates more monosaccharide and protein content than the wild type. We conclude that this QS phenotype might be due to extended investment into growth rather than spore development. Consistent with this, the ComX deficient mutant shows a delayed activation of the pre-spore specific promoter, PspoIIQ, and a delayed, more synchronous commitment to sporulation. We conclude that ComX mediated early commitment to sporulation of the wild type slows down biofilm formation and modulates the coexistence of multiple biological states during the early stages of biofilm development.

18.
Mol Microbiol ; 114(6): 920-933, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32491277

RESUMEN

Biofilm formation is a co-operative behaviour, where microbial cells become embedded in an extracellular matrix. This biomolecular matrix helps manifest the beneficial or detrimental outcome mediated by the collective of cells. Bacillus subtilis is an important bacterium for understanding the principles of biofilm formation. The protein components of the B. subtilis matrix include the secreted proteins BslA, which forms a hydrophobic coat over the biofilm, and TasA, which forms protease-resistant fibres needed for structuring. TapA is a secreted protein also needed for biofilm formation and helps in vivo TasA-fibre formation but is dispensable for in vitro TasA-fibre assembly. We show that TapA is subjected to proteolytic cleavage in the colony biofilm and that only the first 57 amino acids of the 253-amino acid protein are required for colony biofilm architecture. Through the construction of a strain which lacks all eight extracellular proteases, we show that proteolytic cleavage by these enzymes is not a prerequisite for TapA function. It remains unknown why TapA is synthesised at 253 amino acids when the first 57 are sufficient for colony biofilm structuring; the findings do not exclude the core conserved region of TapA having a second role beyond structuring the B. subtilis colony biofilm.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de la Matriz Extracelular/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas de la Matriz Extracelular/genética , Regulación Bacteriana de la Expresión Génica , Eliminación de Secuencia
20.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31964697

RESUMEN

Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted.IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Genoma Bacteriano , Genómica , Listeria monocytogenes/fisiología , Factor sigma/metabolismo , Adhesión Bacteriana , Flagelos/metabolismo , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple , Ramnosa/metabolismo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...