Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Xenobiot ; 14(1): 79-95, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38249102

RESUMEN

Metsulfuron-methyl, a widely used herbicide, could cause damage to the sensitive plants in crop-rotation systems at extremely low levels in the soil. The potential of plant growth-promoting bacteria (PGPB) for enhancing the resistance of plants against herbicide stress has been discovered recently. Therefore, it is poorly understood how physiological processes occur in plants, while PGPB reduce the phytotoxicity of herbicides for agricultural crops. In greenhouse studies, the effect of strains Pseudomonas protegens DA1.2 and Pseudomonas chlororaphis 4CH on oxidative damage, acetolactate synthase (ALS), enzymatic and non-enzymatic antioxidants in canola (Brassica napus L.), and wheat (Triticum aestivum L.) were investigated under two levels (0.05 and 0.25 mg∙kg-1) of metsulfuron-methyl using spectrophotometric assays. The inoculation of herbicide-exposed wheat with bacteria significantly increased the shoots fresh weight (24-28%), amount of glutathione GSH (60-73%), and flavonoids (5-14%), as well as activity of ascorbate peroxidase (129-140%), superoxide dismutase SOD (35-49%), and ALS (50-57%). Bacterial treatment stimulated the activity of SOD (37-94%), ALS (65-73%), glutathione reductase (19-20%), and the accumulation of GSH (61-261%), flavonoids (17-22%), and shoots weight (27-33%) in herbicide-exposed canola. Simultaneous inoculation prevented lipid peroxidation induced by metsulfuron-methyl in sensitive plants. Based on the findings, it is possible that the protective role of bacterial strains against metsulfuron-metil is linked to antioxidant system activation.

2.
Toxics ; 11(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38133402

RESUMEN

The use of bacteria of the genus Pseudomonas-destructors of persistent pollutants for biotechnologies of environmental purification-is an interesting area of research. The aim of this work was to study the potential of Pseudomonas mosselii strain 5(3) isolated from pesticide-contaminated soil as a degrader of C7-C10 perfluorocarboxylic acids (PFCAs) and analyze its complete genome. The genome of the strain has been fully sequenced. It consists of a chromosome with a length of 5,676,241 b.p. and containing a total of 5134 genes, in particular, haloalkane dehalogenase gene (dhaA), haloacetate dehalogenase H-1 gene (dehH1), fluoride ion transporter gene (crcB) and alkanesulfonate monooxygenase gene (ssuE), responsible for the degradation of fluorinated compounds. The strain P. mosselii 5(3) for was cultivated for 7 days in a liquid medium with various C7-C10 PFCAs as the sole source of carbon and energy, and completely disposed of them. The results of LC-MS analysis showed that the transformation takes place due to perfluorohexanoic acid with the release of various levels of stoichiometry (depending on PFCA) of fluorine ion mineralization indicators determined by ion chromatography. Thus, Pseudomonas mosselii strain 5(3) demonstrates a genetically confirmed high potential for the decomposition of C7-C10 PFCA.

3.
Microbiol Resour Announc ; 12(12): e0083923, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955621

RESUMEN

The Pseudomonas mosselii 5(3) strain is a potential degrader of persistent perfluorinated pollutants, particularly C7-C9 perfluorinated acids. The genome of the strain has been fully sequenced. It consists of a chromosome with a length of 5,676,241 base pairs and a G-C content of 64.38%.

4.
Biomolecules ; 13(11)2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-38002350

RESUMEN

High-density planting can increase crop productivity per unit area of cultivated land. However, the application of this technology is limited by the inhibition of plant growth in the presence of neighbors, which is not only due to their competition for resources but is also caused by growth regulators. Specifically, the abscisic acid (ABA) accumulated in plants under increased density of planting has been shown to inhibit their growth. The goal of the present study was to test the hypothesis that bacteria capable of degrading ABA can reduce the growth inhibitory effect of competition among plants by reducing concentration of this hormone in plants and their environment. Lettuce plants were grown both individually and three per pot; the rhizosphere was inoculated with a strain of Pseudomonas plecoglossicida 2.4-D capable of degrading ABA. Plant growth was recorded in parallel with immunoassaying ABA concentration in the pots and plants. The presence of neighbors indeed inhibited the growth of non-inoculated lettuce plants. Bacterial inoculation positively affected the growth of grouped plants, reducing the negative effects of competition. The bacteria-induced increase in the mass of competing plants was greater than that in the single ones. ABA concentration was increased by the presence of neighbors both in soil and plant shoots associated with the inhibition of plant growth, but accumulation of this hormone as well as inhibition of the growth of grouped plants was prevented by bacteria. The results confirm the role of ABA in the response of plants to the presence of competitors as well as the possibility of reducing the negative effect of competition on plant productivity with the help of bacteria capable of degrading this hormone.


Asunto(s)
Ácido Abscísico , Bacterias , Ácido Abscísico/farmacología , Brotes de la Planta , Suelo , Hormonas
5.
Plants (Basel) ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501327

RESUMEN

The reaction of plants to simultaneous stress action and treatment with biological stimulants still remains poorly studied. Laboratory and field experiments have been conducted to study the growth and yield of bread wheat (Triticum aestivum L.) of the variety Ekada 113; stress markers and quantitative ratios of phytohormones in plants under insufficient soil moisture; the effects of spraying with herbicide containing 2,4-D and dicamba and growth-stimulating bacterium Pseudomonas protegens DA1.2; and combinations of these factors. Under water shortage conditions, spraying plants with Chistalan reduced their growth compared to non-sprayed plants, which was associated with inhibition of root growth and a decrease in the content of endogenous auxins in the plants. Under conditions of combined stress, the treatment of plants with the strain P. protegens DA1.2 increased the IAA/ABA ratio and prevented inhibition of root growth by auxin-like herbicide, ensuring water absorption by the roots as well as increased transpiration. As a result, the content of malondialdehyde oxidative stress marker was reduced. Bacterization improved the water balance of wheat plants under arid field conditions. The addition of bacterium P. protegens DA1.2 to the herbicide Chistalan increased relative water content in wheat leaves by 11% compared to plants treated with herbicide alone. Application of the bacterial strain P. protegens DA1.2 increased the amount of harvested grain from 2.0-2.2 t/ha to 3.2-3.6 t/ha. Thus, auxin-like herbicide Chistalan and auxin-producing bacterium P. protegens DA1.2 may affect the balance of phytohormones in different ways. This could be the potential reason for the improvement in wheat plants' growth during dry periods when the bacterium P. protegens DA1.2 is included in mixtures for weed control.

6.
Opt Lett ; 46(10): 2304-2307, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988605

RESUMEN

Subwavelength nanostructures made of high-index low-loss materials have revolutionized the fields of linear and nonlinear nanophotonics, stimulating growing demands for efficient and inexpensive fabrication technologies. Here, we demonstrate high-precision and reproducible printing of hemispherical Si nanoparticles (NPs) via controllable dewetting of glass-supported $\alpha$-Si films driven by a single femtosecond laser pulse. The diameter of the formed nanocrystalline NPs can be fully controlled by initial $\alpha$-Si film thickness as well as lateral size of the laser spot and can be predicted by a simple empirical model based on conservation of energy and mass. A resonant optical response associated with Mie-type resonances supported by hemispherical NPs was confirmed by combining numerical modeling with optical microspectroscopy. Inexpensive and high-performing direct laser printing of nanocrystalline Si Mie resonators with a user-defined arrangement opens a pathway for various applications in optical sensing and nonlinear nanophotonics.

7.
Small ; 16(19): e2000410, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32309903

RESUMEN

Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.

8.
Sci Rep ; 9(1): 6281, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000794

RESUMEN

Compounds that are candidates for drug repurposing can be ranked by leveraging knowledge available in the biomedical literature and databases. This knowledge, spread across a variety of sources, can be integrated within a knowledge graph, which thereby comprehensively describes known relationships between biomedical concepts, such as drugs, diseases, genes, etc. Our work uses the semantic information between drug and disease concepts as features, which are extracted from an existing knowledge graph that integrates 200 different biological knowledge sources. RepoDB, a standard drug repurposing database which describes drug-disease combinations that were approved or that failed in clinical trials, is used to train a random forest classifier. The 10-times repeated 10-fold cross-validation performance of the classifier achieves a mean area under the receiver operating characteristic curve (AUC) of 92.2%. We apply the classifier to prioritize 21 preclinical drug repurposing candidates that have been suggested for Autosomal Dominant Polycystic Kidney Disease (ADPKD). Mozavaptan, a vasopressin V2 receptor antagonist is predicted to be the drug most likely to be approved after a clinical trial, and belongs to the same drug class as tolvaptan, the only treatment for ADPKD that is currently approved. We conclude that semantic properties of concepts in a knowledge graph can be exploited to prioritize drug repurposing candidates for testing in clinical trials.


Asunto(s)
Reposicionamiento de Medicamentos/métodos , Difusión de la Información/métodos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Semántica , Benzazepinas/uso terapéutico , Ensayos Clínicos como Asunto , Bases de Datos Factuales , Humanos , Conocimiento , Reconocimiento de Normas Patrones Automatizadas
9.
Nanoscale ; 10(24): 11403-11409, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29881863

RESUMEN

High-throughput laser printing of resonant silicon nanoparticles has emerged as a novel tool for the fabrication of deeply subwavelength objects with various functionalities. The applications of resonant silicon nanoparticles crucially depend on their crystalline state. However, the ways to control the crystalline structure during laser printing remain unstudied. Here we demonstrate, both experimentally and theoretically, how the crystalline structure of silicon nanoparticles fabricated by a laser printing technique can be varied from almost amorphous to a polycrystalline state. In particular, we propose a method of crystalline structure control via changing the distance between the irradiated silicon film and the receiving substrate. This study allows the most optimal conditions for second harmonic generation to be revealed. We believe that the proposed method opens the door to fully controllable laser printing of functional nanoparticles and nanostructures.

10.
Nano Lett ; 17(5): 3047-3053, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28409641

RESUMEN

Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

11.
Adv Mater ; 28(16): 3087-93, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26901635

RESUMEN

Ordered hybrid nanostructures for nanophotonics applications are fabricated by a novel approach via femtosecond laser melting of asymmetric metal-dielectric (Au/Si) nanoparticles created by lithographical methods. The approach allows selective reshaping of the metal components of the hybrid nanoparticles without affecting the dielectric ones and is applied for tuning of the scattering properties of the hybrid nanostructures in the visible range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...