Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702965

RESUMEN

BACKGROUND AND AIMS: Desiccation tolerance (DT) is crucial for survival in arid environments, where organisms develop strategies in reproduction, maintenance, and defense to cope with water scarcity. Therefore, investigating the relationship between reproduction and DT is essential to understand the ecology and adaptive strategies of species. This study explores the connection between the development of male and female gametangia in the moss Bryum argenteum and the decrease in DT during the progression of phenological phases in gametangia and protonema. METHODS: Samples collected from a dry tropical forest in Brazil were cultivated, cloned, and subjected to desiccation. Subsequently, the physiological parameters of shoots and protonemata were analysed. Shoot and protonema regeneration were monitored for 28 days after the physiological analyses. Both phases were subjected to control and desiccation treatments. KEY RESULTS: Significant effects of desiccation and sex on the physiological parameters and regeneration capacity of shoots and protonemata were found. Male shoots generally exhibited lower values in Fv/Fm, and ϕPSII, while females demonstrated higher values and better recovery after desiccation. Protonemata also showed variation in Fv/Fm over time and sex, with no significant differences in ϕPSII between them. Desiccated male shoots had higher mortality rates and produced fewer new shoots. Regarding the females, the regeneration patterns varied between the desiccation-exposed groups and the control, with decreased shoot production, and some protonemata growing into filaments without forming shoots. CONCLUSION: These findings improve our understanding of bryophytes ecological responses to desiccation stress and provide insights into their adaptive strategies in challenging environments, such as the possible rarity of males in dioicous mosses populations.

2.
Am J Bot ; 110(12): e16253, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938812

RESUMEN

PREMISE: Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS: We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS: (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS: Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.


Asunto(s)
Briófitas , Bryopsida , Células Germinativas de las Plantas , Briófitas/anatomía & histología , Nitrógeno , Fósforo
3.
Appl Plant Sci ; 10(2): e11467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495199

RESUMEN

Premise: In dioicous mosses, sex is determined by a single U (female, ♀) or V (male, ♂) chromosome. Although a 1 : 1 sex ratio is expected following meiosis, phenotypic sex ratios based on the production of gametangia are often female-biased. The dryland moss Syntrichia caninervis (Pottiaceae) is notable for its low frequency of sex expression and strong phenotypic female bias. Here we present a technique to determine genotypic sex in a single shoot of S. caninervis, and report results of a case study examining genotypic and phenotypic sex ratios. Methods: We reanalyzed 271 non-expressing gametophyte shoots from a previous study on S. caninervis sex expression across microhabitats using a restriction fragment length polymorphism (RFLP) method. Results: We recovered a genotypic sex ratio in non-expressing shoots of 18.4♀ : 1♂, which exceeds the female bias of the phenotypic ratio (5.3♀ : 1♂; P = 0.013). We also found that the distribution of male and female genotypes across microsites with different levels of sun exposure was not predicted by patterns of sex expression in these microsites. Discussion: These findings contribute to our understanding of how the environment may modulate sex ratios in S. caninervis, either through its direct influence on sex expression or through selection on genotypes with particular sex expression phenotypes.

4.
J Exp Bot ; 72(11): 4161-4179, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33595636

RESUMEN

Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration.


Asunto(s)
Desecación , Rayos Ultravioleta , Biología , Clorofila , Ecosistema , Fotosíntesis
5.
Am J Bot ; 108(2): 249-262, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249553

RESUMEN

PREMISE: Desiccation tolerance (DT) is a widespread phenomenon among land plants, and variable ecological strategies for DT are likely to exist. Using Syntrichia caninervis, a dryland moss and model system used in DT studies, we hypothesized that DT is lowest in juvenile (protonemal) tissues, highest in asexual reproductive propagules (gemmae), and intermediate in adults (shoots). We tested the long-standing hypothesis of an inherent constitutive strategy of DT in this species. METHODS: Plants were rapidly dried to levels of equilibrating relative humidity (RHeq) ranging from 0 to 93%. Postrehydration recovery was assessed using chlorophyll fluorescence, regeneration rates, and visual tissue damage. For each life phase, we estimated the minimum rate of drying (RoDmin ) at RHeq = 42% that did not elicit damage 24 h postrehydration. RESULTS: DT strategy varied with life phase, with adult shoots having the lowest RoDmin (10-25 min), followed by gemmae (3-10 h) and protonema (14-20 h). Adult shoots exhibited no detectable damage 24 h postrehydration following a rapid-dry only at the highest RHeq used (93%), but when dried to lower RHs the response declined to <50% of control fluorescence values. Notably, immediately following rehydration (0 h postrehydration), shoots were damaged below control levels of fluorescence regardless of the RHeq, thus implicating damage. CONCLUSIONS: Life phases of the moss S. caninervis had a range of strategies from near constitutive (adult shoots) to demonstrably inducible (protonema). A new response variable for assessing degree of DT is introduced as the minimum rate of drying from which full recovery occurs.


Asunto(s)
Briófitas , Bryopsida , Desecación
6.
Plant J ; 105(5): 1339-1356, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33277766

RESUMEN

With global climate change, water scarcity threatens whole agro/ecosystems. The desert moss Syntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequenced S. caninervis genome consists of 13 chromosomes containing 16 545 protein-coding genes and 2666 unplaced scaffolds. Syntenic relationships within the S. caninervis and Physcomitrella patens genomes indicate the S. caninervis genome has undergone a single whole genome duplication event (compared to two for P. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history of S. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number of Copia and Gypsy elements. Orthogroup analyses revealed an expansion of ELIP genes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.


Asunto(s)
Briófitas/genética , Desecación , Genómica/métodos , Estrés Fisiológico , Transcriptoma/genética
7.
Plant Cell Environ ; 42(11): 3140-3151, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31306496

RESUMEN

Plant functional trait analyses have focused almost exclusively on vascular plants, but bryophytes comprise ancient and diverse plant lineages that have widespread global distributions and important ecological functions in terrestrial ecosystems. We examined a diverse clade of dryland mosses, Syntrichia, and studied carbon balance during a precipitation event (C-balance), a functional trait related to physiological functioning, desiccation tolerance, survival, and ecosystem carbon and nitrogen cycling. We examined variability in C-balance among 14 genotypes of Syntrichia and measured an additional 10 physiological and 13 morphological traits at the cell, leaf, shoot, and clump level. C-balance varied 20-fold among genotypes, and highest C-balances were associated with long, narrow leaves with awns, and small cells with thick cell walls, traits that may influence water uptake and retention during a precipitation event. Ordination analyses revealed that the axis most strongly correlated with C-balance included the maximum chlorophyll fluorescence, Fm , indicating the importance of photosystem II health for C exchange. C-balance represents a key functional trait in bryophytes, but its measurement is time intensive and not feasible to measure on large scales. We propose two models (using physiological and morphological traits) to predict C-balance, whereby identifying simpler to measure traits for trait databases.


Asunto(s)
Bryopsida/fisiología , Carbono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Bryopsida/anatomía & histología , Bryopsida/citología , Bryopsida/genética , Clorofila/química , Desecación , Modelos Biológicos , Fenotipo , Fotosíntesis/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/citología , Agua/metabolismo , Agua/fisiología
8.
Am J Bot ; 103(5): 856-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27208354

RESUMEN

PREMISE OF THE STUDY: Free-living sperm of mosses are known to be partially desiccation tolerant. We hypothesized that mature moss antheridia should also tolerate desiccation and that rehydration to partial turgor (prehydration) or rehydration to full turgor (rehydration) before immersion in water is required for full recovery from any damaging effects of prior desiccation. METHODS: Bryum argenteum (silvery-thread moss) was grown in continuous culture for several months, produced mature perigonia (clusters of antheridia), and these were subjected to a slow rate of drying (∼36 h from full turgor to desiccation) and equilibration with 50% relative humidity. Perigonia were prehydrated (exposed to a saturated atmosphere) or rehydrated (planted upright in saturated media) for 0, 45, 90, 135, 180, and 1440 min, then immersed in sterile water. Time to first sperm mass release, number of antheridia releasing sperm masses, and the integrity of the first sperm mass released were assessed. KEY RESULTS: Rehydration of dried antheridia for at least 3 h before immersion in water resulted in antheridia functioning similar to control undried antheridia. Compared with rehydration, prehydration was not effective in the recovery of antheridia from desiccation. CONCLUSIONS: For the first time, moss antheridia are shown to be fully desiccation tolerant at a functional level, capable of releasing fully functional sperm following a slow drying event provided the antheridia are allowed to rehydrate at least 3 h before immersion in water.


Asunto(s)
Adaptación Fisiológica , Bryopsida/fisiología , Desecación , Células Germinativas de las Plantas/fisiología , Biomasa , Brotes de la Planta/fisiología , Factores de Tiempo , Agua
9.
Ann Bot ; 117(1): 153-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26354931

RESUMEN

BACKGROUND AND AIMS: Embryonic sporophytes of the moss Aloina ambigua are inducibly desiccation tolerant (DT). Hardening to DT describes a condition of temporary tolerance to a rapid-drying event conferred by a previous slow-drying event. This paper aimed to determine whether sporophytic embryos of a moss can be hardened to DT, to assess how the rate of desiccation influences the post-rehydration dynamics of recovery, hardening and dehardening, and to determine the minimum rate of drying for embryos and shoots. METHODS: Embryos were exposed to a range of drying rates using wetted filter paper in enclosed Petri dishes, monitoring relative humidity (RH) inside the dish and equilibrating tissues with 50% RH. Rehydrated embryos and shoots were subjected to a rapid-drying event at intervals, allowing assessments of recovery, hardening and dehardening times. KEY RESULTS: The minimum rate of slow drying for embryonic survival was ∼3·5 h and for shoots ∼9 h. Hardening to DT was dependent upon the prior rate of drying. When the rate of drying was extended to 22 h, embryonic hardening was strong (>50% survival) with survival directly proportional to the post-rehydration interval preceding rapid drying. The recovery time (repair/reassembly) was so short as to be undetectable in embryos and shoots desiccated gradually; however, embryos dried in <3·5 h exhibited a lag time in development of ∼4 d, consistent with recovery. Dehardening resulted in embryos incapable of surviving a rapid-drying event. CONCLUSIONS: The ability of moss embryos to harden to DT and the influence of prior rate of drying on the dynamics of hardening are shown for the first time. The minimum rate of drying is introduced as a new metric for assessing ecological DT, defined as the minimum duration at sub-turgor during a drying event in which upon rehydration the plant organ of interest survives relatively undamaged from the desiccating event.


Asunto(s)
Adaptación Fisiológica , Bryopsida/embriología , Desecación , Semillas/embriología , Bryopsida/genética , Genotipo , Humedad , Brotes de la Planta/fisiología , Agua/metabolismo
10.
Ann Bot ; 115(4): 593-603, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25578378

RESUMEN

BACKGROUND AND AIMS: Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness. METHODS: Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot-sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot-sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed. KEY RESULTS: The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation. CONCLUSIONS: The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Desecación , Aptitud Genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Fenotipo , Brotes de la Planta/crecimiento & desarrollo
11.
Funct Plant Biol ; 41(5): 460-467, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32481005

RESUMEN

The effect of differential drying rates on desiccation tolerance in Physcomitrella patens (Hedw.) Bruch & Schimp. is examined. In order to provide more evidence as to the status of desiccation tolerance in P. patens, a system was designed that allowed alteration of the rate of water loss within a specific relative humidity. An artificial substrate consisting of layers of wetted filter paper was used to slow the drying process to as long as 284h, a significant increase over the commonly used method of exposure (saturated salt solution). By slowing the rate of drying, survival rates and chlorophyll fluorescence parameters improved, and tissue regeneration time was faster. These results indicate a trend where the capacity for desiccation tolerance increases with slower drying, and reveal a much stronger capacity for desiccation tolerance in P. patens than was previously known.

12.
Am J Bot ; 100(8): 1522-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23876454

RESUMEN

PREMISE OF THE STUDY: Bryophytes include clades that incorporate constitutive desiccation tolerance, especially terrestrial species. Here we test the hypothesis that the opposing ecological strategy of desiccation tolerance, inducibility, is present in a desert moss, and address this hypothesis by varying rates of drying in a laboratory study. Desiccation tolerance is arguably the most important evolutionary innovation relevant to the colonization of land by plants; increased understanding of the ecological drivers of this trait will eventually illuminate the responsible mechanisms and ultimately open doors to the potential for the application of this trait in cultivated plants. METHODS: Plants were cloned, grown in continuous culture (dehardened) for several months, and subjected to rates of drying (drying times) ranging from 30 min to 53 h, rehydrated and tested for recovery using chlorophyll fluorescence, leaf damage, and regeneration of protonema and shoots. KEY RESULTS: Rate of drying significantly affected all recovery responses, with very rapid drying rates severely damaging the entire shoot except the shoot apex and resulting in slower growth rates, fewer regenerative shoots produced, and a compromised photosynthetic system as inferred from fluorescence parameters. CONCLUSIONS: For the first time, a desert moss is shown to exhibit an ecological strategy of desiccation tolerance that is inducible, challenging the assumption that arid-land bryophytes rely exclusively on constitutive protection. Results indicate that previous considerations defining a slow-dry event in bryophytes need reevaluation, and that the ecological strategy of inducible desiccation tolerance is probably more common than currently understood among terrestrial bryophytes.


Asunto(s)
Adaptación Fisiológica , Bryopsida/fisiología , Brotes de la Planta/fisiología , Clorofila/metabolismo , Desecación , Fluorescencia , Humedad , Hojas de la Planta/fisiología , Regeneración , Factores de Tiempo , Agua/análisis , Agua/metabolismo
13.
Ann Bot ; 107(6): 897-907, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21320878

RESUMEN

BACKGROUND AND AIMS: Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. METHODS: Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. KEY RESULTS: The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. CONCLUSIONS: Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.


Asunto(s)
Bryopsida/fisiología , Biomasa , Bryopsida/anatomía & histología , Bryopsida/genética , Genotipo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Reproducción/fisiología , Reproducción Asexuada
14.
Am J Bot ; 96(9): 1712-21, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21622357

RESUMEN

The cost of sexual reproduction is incurred when the current reproductive episode contributes to a a decline in future plant performance. To test the hypotheses that a trade-off exists between current sexual reproduction and subsequent clonal regeneration and that resources limit reproduction and regeneration, plants of the widespread moss Pterygoneurum ovatum were subjected to induced sporophytic abortion, upper leaf removal, and nutrient amendment treatments. Sexually reproducing plants were slower or less likely to produce regenerative structures (protonemata or shoots) and produced fewer regenerative tissue areas or structures. The ability and the timeline to reproduce sexually and regenerate clonally were unaffected by an inorganic nutrient amendment. However, when leaves subtending the sporophyte were removed, the sporophytes were less likely to mature, tended to take a longer time to mature, and were smaller compared to sporophytes from shoots with a full complement of upper leaves. Our findings indicate that plants investing in sexual reproduction suffer a cost of decreased clonal regeneration and indicate that sporophyte maturation is resource-limited, with upper leaves contributing to the nutrition of the sporophyte. This study represents only the second explicit experimental demonstration of a trade-off between sexual and asexual reproduction in bryophytes.

15.
Ann Bot ; 99(1): 53-60, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17098752

RESUMEN

BACKGROUND AND AIMS: Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. METHODS: Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. KEY RESULTS: Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. CONCLUSIONS: It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress.


Asunto(s)
Bryopsida/fisiología , Clima Desértico , Agua/fisiología , Desecación
16.
Ann Bot ; 97(4): 505-11, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16478767

RESUMEN

BACKGROUND AND AIMS: Actively growing post-embryonic sporophytes of desert mosses are restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due in part to a reduced thermotolerance for sporophytes relative to gametophytes. METHODS: Gametophytes with attached embryonic sporophytes of Microbryum starckeanum were exposed whilst desiccated to thermal episodes of 35 degrees C (1 hr), 55 degrees C (1 hr), 75 degrees C (1 hr) and 75 degrees C (3 hr), then moistened and allowed to recover for 35 d in a growth chamber. KEY RESULTS: All of the gametophytes survived the thermal exposures and produced protonemata, with the majority also producing shoot buds. Symptoms of gametophytic stress (leaf burning and discoloration of entire shoots) were present in lower frequencies in the 55 degrees C exposure. Sporophyte resumption of growth and maturation to meiosis were significantly negatively affected by thermal treatment. Not a single sporophyte exposed to the two higher thermal treatments (75 degrees C for 1 h and 75 degrees C for 3 h) survived to meiosis, and those sporophytes exposed to 75 degrees C that survived to the post-embryonic phenophase took significantly longer to reach this phase. Furthermore, among the thermal treatments where some capsules reached maturity (35 degrees C and 55 degrees C), maternal shoots that produced a meiotic capsule took longer to regenerate through protonemata than maternal shoots aborting their sporophyte, suggestive of a resource trade-off between generations. CONCLUSIONS: Either (1) the inherent sporophyte thermotolerance is quite low even in this desert moss, and/or (2) a gametophytic thermal stress response controls sporophyte viability.


Asunto(s)
Adaptación Fisiológica , Bryopsida/fisiología , Clima Desértico , Calor , Bryopsida/citología , Bryopsida/crecimiento & desarrollo , Agua
17.
Am J Bot ; 91(1): 1-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21653357

RESUMEN

The extremely skewed female-biased sex ratio in the desert moss Syntrichia caninervis was investigated by assessing the regeneration capacity of detached leaves. Juvenile, green, yellow-green, and brown leaves equating to approximately 0, 2, 6, and 12 yr of age, respectively, were detached from individuals of S. caninervis collected from 10 field populations and grown in a growth chamber for 58 d at a light intensity of 33-128 µmol · m(-2) · s(-1). Younger leaves (0-2 yr old) tended to have a greater viability, regenerate more quickly, extend their protonemal filaments farther, produce shoots (gametophores) more quickly, produce more shoots, and accumulate a greater biomass than older leaves (6 and 12 yr old). Among younger leaf classes, regenerating female leaves were more likely to produce a shoot than male leaves and produced more shoots than male leaves. The sexes did not differ significantly in time until protonemal emergence, linear extension of protonemata, or rate of biomass accumulation. However, protonemata of male leaves tended to emerge more quickly and produce a greater total biomass, ultimately consisting mostly of protonemata, than did female leaves. The more rapid proliferation of shoots by female leaf regenerants may help to explain the rarity of males in this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...