Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245467

RESUMEN

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Asunto(s)
Trasplante de Hígado , Animales , Conductos Biliares/patología , Células Epiteliales/patología , Fibrosis , Humanos , Donadores Vivos , Ratones
2.
iScience ; 24(6): 102552, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34151225

RESUMEN

Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-ß signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.

3.
Hepatology ; 74(2): 973-986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872408

RESUMEN

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Asunto(s)
Regeneración Hepática/efectos de los fármacos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hepatectomía , Hepatocitos , Humanos , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/administración & dosificación , Cultivo Primario de Células
4.
Am J Transplant ; 21(9): 2950-2963, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33428803

RESUMEN

Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Glucemia , Factor 7 de Crecimiento de Fibroblastos , Supervivencia de Injerto , Ratones
5.
J Hepatol ; 74(4): 860-872, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221352

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS: The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS: Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION: These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY: Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.


Asunto(s)
Neoplasias de los Conductos Biliares , Quimiocina CCL2/metabolismo , Colangiocarcinoma , Citocina TWEAK/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Descubrimiento de Drogas , Humanos , Ratones , Ratas , Transducción de Señal , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
6.
BMC Med Genomics ; 13(1): 60, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252771

RESUMEN

BACKGROUND: Despite the emergence of cell-free DNA (cfDNA) as a clinical biomarker in cancer, the tissue origins of cfDNA in healthy individuals have to date been inferred only by indirect and relative measurement methods, such as tissue-specific methylation and nucleosomal profiling. METHODS: We performed the first direct, absolute measurement of the tissue origins of cfDNA, using tissue-specific knockout mouse strains, in both healthy mice and following paracetamol (APAP) overdose. We then investigated the utility of total cfDNA and the percentage of liver-specific cfDNA as clinical biomarkers in patients presenting with APAP overdose. RESULTS: Analysis of cfDNA from healthy tissue-specific knockout mice showed that cfDNA originates predominantly from white and red blood cell lineages, with minor contribution from hepatocytes, and no detectable contribution from skeletal and cardiac muscle. Following APAP overdose in mice, total plasma cfDNA and the percentage fraction originating from hepatocytes increased by ~ 100 and ~ 19-fold respectively. Total cfDNA increased by an average of more than 236-fold in clinical samples from APAP overdose patients with biochemical evidence of liver injury, and 18-fold in patients without biochemically apparent liver injury. Measurement of liver-specific cfDNA, using droplet digital PCR and methylation analysis, revealed that the contribution of liver to cfDNA was increased by an average of 175-fold in APAP overdose patients with biochemically apparent liver injury compared to healthy subjects, but was not increased in overdose patients with normal liver function tests. CONCLUSIONS: We present a novel method for measurement of the tissue origins of cfDNA in healthy and disease states and demonstrate the potential of cfDNA as a clinical biomarker in APAP overdose.


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Ácidos Nucleicos Libres de Células/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Sobredosis de Droga/complicaciones , Hígado/metabolismo , Animales , Estudios de Casos y Controles , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico
7.
Semin Liver Dis ; 39(4): 442-451, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31242527

RESUMEN

Liver failure arising from acute and chronic liver disease is an unmet clinical need that urgently requires novel therapeutic options in addition to orthotopic liver transplantation. Cell therapies offer new strategies to recover liver function through the reconstitution of healthy parenchyma and resolution of tissue pathology. Macrophages are professional phagocytes that comprise a key part of the innate immune system providing an important defense mechanism against invading pathogens. Macrophages are an inherently diverse cell type with respect to ontogeny, tissue distribution, phenotype, and function. The ability of macrophages to afford innate immunity, efficiently scavenge apoptotic/necrotic cells, and modulate local tissue microenvironment makes them an attractive cell therapy candidate for various diseases. This review aims to outline the rationale and utility of macrophages to serve as a potential cell therapy for liver disease.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Hepatopatías/terapia , Macrófagos/citología , Humanos , Inmunidad Innata , Hepatopatías/inmunología
8.
Stem Cells Transl Med ; 8(3): 271-284, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30394698

RESUMEN

We describe a novel therapeutic approach for cirrhosis using mesenchymal stem cells (MSCs) and colony-stimulating factor-1-induced bone marrow-derived macrophages (id-BMMs) and analyze the mechanisms underlying fibrosis improvement and regeneration. Mouse MSCs and id-BMMs were cultured from mouse bone marrow and their interactions analyzed in vitro. MSCs, id-BMMs, and a combination therapy using MSCs and id-BMMs were administered to mice with CCl4 -induced cirrhosis. Fibrosis regression, liver regeneration, and liver-migrating host cells were evaluated. Administered cell behavior was also tracked by intravital imaging. In coculture, MSCs induced switching of id-BMMs toward the M2 phenotype with high phagocytic activity. In vivo, the combination therapy reduced liver fibrosis (associated with increased matrix metalloproteinases expression), increased hepatocyte proliferation (associated with increased hepatocyte growth factor, vascular endothelial growth factor, and oncostatin M in the liver), and reduced blood levels of liver enzymes, more effectively than MSCs or id-BMMs monotherapy. Intravital imaging showed that after combination cell administration, a large number of id-BMMs, which phagocytosed hepatocyte debris and were retained in the liver for more than 7 days, along with a few MSCs, the majority of which were trapped in the lung, migrated to the fibrotic area in the liver. Host macrophages and neutrophils infiltrated after combination therapy and contributed to liver fibrosis regression and promoted regeneration along with administered cells. Indirect effector MSCs and direct effector id-BMMs synergistically improved cirrhosis along with host cells in mice. These studies pave the way for new treatments for cirrhosis. Stem Cells Translational Medicine 2019;8:271&284.


Asunto(s)
Cirrosis Hepática/terapia , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/fisiología , Hígado/fisiología , Regeneración Hepática/fisiología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
9.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263216

RESUMEN

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cirrosis Hepática/patología , Hígado/lesiones , Macrófagos/inmunología , Fagocitosis/inmunología , Factor de Transcripción STAT3/metabolismo , Traslado Adoptivo , Animales , Apoptosis/inmunología , Humanos , Hígado/patología , Macrófagos/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/inmunología , Regeneración/fisiología , Pez Cebra/embriología
10.
Cytotherapy ; 19(4): 555-569, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28214127

RESUMEN

BACKGROUND AIMS: Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. METHODS: Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. RESULTS: A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. DISCUSSION: A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring.


Asunto(s)
Rastreo Celular/métodos , Dextranos/química , Hierro/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/métodos , Supervivencia Celular , Células Cultivadas , Dextranos/farmacocinética , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/farmacocinética , Humanos , Cirrosis Hepática/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
11.
NPJ Regen Med ; 2: 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302350

RESUMEN

Chronic liver injury can be caused by viral hepatitis, alcohol, obesity, and metabolic disorders resulting in fibrosis, hepatic scarring, and cirrhosis. Novel therapies are urgently required and previous work has demonstrated that treatment with bone marrow derived macrophages can improve liver regeneration and reduce fibrosis in a murine model of hepatic injury and fibrosis. Here, we describe a protocol whereby pure populations of therapeutic macrophages can be produced in vitro from murine embryonic stem cells on a large scale. Embryonic stem cell derived macrophages display comparable morphology and cell surface markers to bone marrow derived macrophages but our novel imaging technique revealed that their phagocytic index was significantly lower. Differences were also observed in their response to classical induction protocols with embryonic stem cell derived macrophages having a reduced response to lipopolysaccharide and interferon gamma and an enhanced response to IL4 compared to bone marrow derived macrophages. When their therapeutic potential was assessed in a murine, carbon tetrachloride-induced injury and fibrosis model, embryonic stem cell derived macrophages significantly reduced the amount of hepatic fibrosis to 50% of controls, down-regulated the number of fibrogenic myofibroblasts and activated liver progenitor cells. To our knowledge, this is the first study that demonstrates a therapeutic effect of macrophages derived in vitro from pluripotent stem cells in a model of liver injury. We also found that embryonic stem cell derived macrophages repopulated the Kupffer cell compartment of clodronate-treated mice more efficiently than bone marrow derived macrophages, and expressed comparatively lower levels of Myb and Ccr2, indicating that their phenotype is more comparable to tissue-resident rather than monocyte-derived macrophages.

12.
NPJ Regen Med ; 2: 28, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302362

RESUMEN

Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

13.
J Am Soc Nephrol ; 27(11): 3345-3355, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27020854

RESUMEN

Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.


Asunto(s)
Vesículas Extracelulares/fisiología , Túbulos Renales Colectores/citología , Vasopresinas/fisiología , Adolescente , Animales , Desamino Arginina Vasopresina/farmacología , Vesículas Extracelulares/efectos de los fármacos , Humanos , Túbulos Renales Colectores/ultraestructura , Masculino , Ratones , Ratas
14.
Toxicol Sci ; 144(1): 173-85, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25527335

RESUMEN

Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122, and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay, and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Diclofenaco/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , MicroARNs/genética , Adenosina Trifosfato/metabolismo , Anciano , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Medios de Cultivo/metabolismo , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Femenino , Marcadores Genéticos , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , L-Lactato Deshidrogenasa/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Factores de Tiempo
15.
Hepatology ; 54(5): 1767-76, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22045675

RESUMEN

UNLABELLED: New biomarkers of liver injury are required in the clinic and in preclinical pharmaceutical evaluation. Previous studies demonstrate that two liver-enriched microRNAs (miR-122 and miR-192) are promising biomarkers of acetaminophen-induced acute liver injury (APAP-ALI) in mice. We have examined these molecules, for the first time, in humans with APAP poisoning. Serum miR-122 and miR-192 were substantially higher in APAP-ALI patients, compared to healthy controls (median ΔΔCt [25th, 75th percentile]) (miR-122: 1,265 [491, 4,270] versus 12.1 [7.0, 26.9], P < 0.0001; miR-192: 6.9 [2.0, 29.2] versus 0.44 [0.30, 0.69], P < 0.0001). A heart-enriched miR-1 showed no difference between APAP-ALI patients and controls, whereas miR-218 (brain-enriched) was slightly higher in the APAP-ALI cohort (0.17 [0.07, 0.50] versus 0.07 [0.04, 0.12]; P = 0.01). In chronic kidney disease (CKD) patients, miR-122 and -192 were modestly higher, compared to controls (miR-122: 32.0 [21.1, 40.9] versus 12.1 [7.0, 26.9], P = 0.006; miR-192: 1.2 [0.74, 1.9] versus 0.44 [0.30, 0.69], P = 0.005), but miR-122 and -192 were substantially higher in APAP-ALI patients than CKD patients (miR-122: P < 0.0001; miR-192: P < 0.0004). miR-122 correlated with peak ALT levels in the APAP-ALI cohort (Pearson R = 0.46, P = 0.0005), but not with prothrombin time. miR-122 was also raised alongside peak ALT levels in a group of patients with non-APAP ALI. Day 1 serum miR-122 levels were almost 2-fold higher in APAP-ALI patients who satisfied King's College Criteria (KCC), compared to those who did not satisfy KCC, although this did not reach statistical significance (P = 0.15). CONCLUSION: This work provides the first evidence for the potential use of miRNAs as biomarkers of human drug-induced liver injury.


Asunto(s)
Acetaminofén/envenenamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Técnicas de Diagnóstico del Sistema Digestivo , MicroARNs/sangre , Enfermedad Aguda , Adolescente , Adulto , Anciano , Alanina Transaminasa/sangre , Analgésicos no Narcóticos/envenenamiento , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/cirugía , Femenino , Humanos , Trasplante de Hígado , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...