Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 1: 14002, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246049

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric carbon dioxide into organic compounds in photosynthetic organisms. Alongside carboxylating the five-carbon sugar ribulose-1,5-bisphosphate (RuBP)(1-3), Rubisco produces a small amount of xylulose-1,5-bisphosphate (XuBP), a potent inhibitor of Rubisco(4). The AAA+ protein Rubisco activase removes XuBP from the active site of Rubisco in an ATP-dependent process(5,6). However, free XuBP rapidly rebinds to Rubisco, perpetuating its inhibitory effect. Here, we combine biochemical and structural analyses to show that the CbbY protein of the photosynthetic bacterium Rhodobacter sphaeroides and Arabidopsis thaliana is a highly selective XuBP phosphatase. We also show that CbbY converts XuBP to the non-inhibitory compound xylulose-5-phosphate, which is recycled back to RuBP. We solve the crystal structures of CbbY from R. sphaeroides and A. thaliana, and through mutational analysis show that the cap domain of the protein confers the selectivity for XuBP over RuBP. Finally, in vitro experiments with CbbY from R. sphaeroides reveal that CbbY cooperates with Rubisco activase to prevent a detrimental build-up of XuBP at the Rubisco active site. We suggest that CbbY, which is conserved in algae and plants, is an important component of the cellular machinery that has evolved to deal with the shortcomings of the ancient enzyme Rubisco.

2.
Nat Struct Mol Biol ; 18(8): 875-80, 2011 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-21765418

RESUMEN

The form I Rubisco of autotrophic bacteria, algae and plants is a complex of eight large (RbcL) and eight small (RbcS) subunits. It fixes atmospheric CO(2) in the dark reaction of photosynthesis. As shown for the cyanobacterial enzyme, folding of the RbcL subunits is mediated by the GroEL-GroES chaperonin system, and assembly requires the specialized chaperone RbcX, a homodimer of ~15-kDa subunits. Here we present the 3.2-Å crystal structure of a Rubisco assembly intermediate, consisting of the RbcL(8) core with eight RbcX(2) molecules bound. The structure reveals the molecular mechanism by which RbcX(2) mediates oligomeric assembly. Specifically, RbcX(2) provides positional information for proper formation of antiparallel RbcL dimers, thereby preventing RbcL-RbcL misalignment and off-pathway aggregation. The RbcL(8)(RbcX(2))(8) structure also suggests that RbcS functions by stabilizing the '60s loop' of RbcL in the catalytically active conformation.


Asunto(s)
Cianobacterias/enzimología , Chaperonas Moleculares/química , Subunidades de Proteína/química , Ribulosa-Bifosfato Carboxilasa/química , Anabaena/genética , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/genética
3.
Nature ; 463(7278): 197-202, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075914

RESUMEN

Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ribulosa-Bifosfato Carboxilasa/ultraestructura , Synechococcus/metabolismo
4.
PLoS One ; 3(6): e2331, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18523640

RESUMEN

The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.


Asunto(s)
Aves/fisiología , Mamíferos/fisiología , Comportamiento de Nidificación , Conducta Predatoria , Animales , Nueva Zelanda , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...