Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014324

RESUMEN

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro. Significantly, we show that LMX1A and LMX1B stability is in part regulated by autophagy, and that these transcription factors bind to multiple ATG8 proteins. Binding is dependent on subcellular localization and nutrient status, with LMX1B interacting with LC3B in the nucleus under basal conditions and associating with both cytosolic and nuclear LC3B during nutrient starvation. Crucially, ATG8 binding stimulates LMX1B-mediated transcription for efficient autophagy and cell stress protection, thereby establishing a novel LMX1B-autophagy regulatory axis that contributes to mDAN maintenance and survival in the adult brain.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas con Homeodominio LIM , Mesencéfalo , Neuronas , Factores de Transcripción , Humanos , Autofagia , Encéfalo/citología , Encéfalo/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Mesencéfalo/metabolismo , Factores de Transcripción/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Neuronas/citología
2.
J Vis Exp ; (176)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34661566

RESUMEN

In Parkinson's disease, progressive dysfunction and degeneration of dopamine neurons in the ventral midbrain cause life-changing symptoms. Neuronal degeneration has diverse causes in Parkinson's, including non-cell autonomous mechanisms mediated by astrocytes. Throughout the CNS, astrocytes are essential for neuronal survival and function, as they maintain metabolic homeostasis in the neural environment. Astrocytes interact with the immune cells of the CNS, microglia, to modulate neuroinflammation, which is observed from the earliest stages of Parkinson's, and has a direct impact on the progression of its pathology. In diseases with a chronic neuroinflammatory element, including Parkinson's, astrocytes acquire a neurotoxic phenotype, and thus enhance neurodegeneration. Consequently, astrocytes are a potential therapeutic target to slow or halt disease, but this will require a deeper understanding of their properties and roles in Parkinson's. Accurate models of human ventral midbrain astrocytes for in vitro study are therefore urgently required. We have developed a protocol to generate high purity cultures of ventral midbrain-specific astrocytes (vmAstros) from hiPSCs that can be used for Parkinson's research. vmAstros can be routinely produced from multiple hiPSC lines, and express specific astrocytic and ventral midbrain markers. This protocol is scalable, and thus suitable for high-throughput applications, including for drug screening. Crucially, the hiPSC derived-vmAstros demonstrate immunomodulatory characteristics typical of their in vivo counterparts, enabling mechanistic studies of neuroinflammatory signaling in Parkinson's.


Asunto(s)
Células Madre Pluripotentes Inducidas , Astrocitos , Neuronas Dopaminérgicas , Humanos , Mesencéfalo , Microglía
3.
Autophagy ; 17(4): 855-871, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32286126

RESUMEN

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Asunto(s)
Autofagia , Técnicas de Cultivo de Célula , Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Mitofagia , Autofagia/efectos de los fármacos , Autofagia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/genética , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , Piridinas/farmacología , Pirimidinas/farmacología , Factores de Tiempo
4.
Methods Mol Biol ; 1880: 257-280, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610703

RESUMEN

To appreciate the positive or negative impact of autophagy during the initiation and progression of human diseases, the isolation or de novo generation of appropriate cell types is required to support focused in vitro assays. In human neurodegenerative diseases such as Parkinson's disease (PD), specific subsets of acutely sensitive neurons become susceptible to stress-associated operational decline and eventual cell death, emphasizing the need for functional studies in those vulnerable groups of neurons. In PD, a class of dopaminergic neurons in the ventral midbrain (mDANs) is affected. To study these, human-induced pluripotent stem cells (hiPSCs) have emerged as a valuable tool, as they enable the establishment and study of mDAN biology in vitro. In this chapter, we describe a stepwise protocol for the generation of mDANs from hiPSCs using a monolayer culture system. We then outline how imaging-based autophagy assessment methodologies can be applied to these neurons, thereby providing a detailed account of the application of imaging-based autophagy assays to human iPSC-derived mDANs.


Asunto(s)
Autofagia , Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Mesencéfalo/citología , Microscopía Fluorescente/métodos , Neurogénesis , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Neuronas Dopaminérgicas/patología , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Células Madre Pluripotentes Inducidas/patología , Mesencéfalo/patología , Enfermedad de Parkinson/patología , Fijación del Tejido/métodos
5.
Nat Nanotechnol ; 13(5): 427-433, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29610530

RESUMEN

The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.


Asunto(s)
Astrocitos/metabolismo , Modelos Biológicos , Nanopartículas/toxicidad , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Placenta/patología , Complicaciones del Embarazo/metabolismo , Animales , Astrocitos/patología , Línea Celular , Femenino , Humanos , Masculino , Ratones , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Embarazo , Complicaciones del Embarazo/inducido químicamente , Complicaciones del Embarazo/patología
6.
Cells ; 6(3)2017 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800101

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed. To achieve this, it is essential that the methodologies commonly used to study autophagy regulation under basal and stressed conditions in standard cell-line models are accurately applied when using hiPSC-derived neuronal cultures. Here, we discuss the roles and control of autophagy in human stem cells, and how autophagy contributes to neural differentiation in vitro. We also describe how autophagy-monitoring tools can be applied to hiPSC-derived neurons for the study of human neurodegenerative disease in vitro.

7.
Neurobiol Dis ; 91: 59-68, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26921471

RESUMEN

High-mobility group box 1 (HMGB1) is a nuclear and cytosolic protein that is released during tissue damage from immune and non-immune cells - including microglia and neurons. HMGB1 can contribute to progression of numerous chronic inflammatory and autoimmune diseases which is mediated in part by interaction with the receptor for advanced glycation endproducts (RAGE). There is increasing evidence from in vitro studies that HMGB1 may link the two main pathophysiological components of Parkinson's disease (PD), i.e. progressive dopaminergic degeneration and chronic neuroinflammation which underlie the mechanistic basis of PD progression. Analysis of tissue and biofluid samples from PD patients, showed increased HMGB1 levels in human postmortem substantia nigra specimens as well as in the cerebrospinal fluid and serum of PD patients. In a mouse model of PD induced by sub-acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), systemic administration of neutralizing antibodies to HMGB1 partly inhibited the dopaminergic cell death, and reduced the increase of RAGE and tumour necrosis factor-alpha. The small natural molecule glycyrrhizin, a component from liquorice root which can directly bind to HMGB1, both suppressed MPTP-induced HMGB1 and RAGE upregulation while reducing MPTP-induced dopaminergic cell death in a dose dependent manner. These results provide first in vivo evidence that HMGB1 serves as a powerful bridge between progressive dopaminergic neurodegeneration and chronic neuroinflammation in a model of PD, suggesting that HMGB1 is a suitable target for neuroprotective trials in PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Ácido Glicirrínico/farmacología , Proteína HMGB1/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Persona de Mediana Edad , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...