Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Ultrason Sonochem ; 109: 107015, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39142027

RESUMEN

In the present study, non-conventional and green technology (ultrasonication) was utilized to recover bioactive compounds from the small, medium and large sized defatted date seed powder (DDSP) particles. Bioactive compounds recovered from DDSP and the remaining fiber-rich residue were incorporated as functional ingredient in the biscuit dough to enhance the functionality and the quality characteristics of the dough and biscuit. The polyphenolic extract and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich extraction residue were incorporated in formulations followed by investigating the effect on rheological, physical and microstructural properties of dough and biscuit. Loss and storage moduli, G'' and G', respectively, of dough increased with decreasing particle size and increasing substitution level while tan δ decreased with increasing substitution level of fiber-rich extraction residue. The smallest particles at 7.5 % substitution level resulted in the lowest creep strain value in dough. Hardness of the dough and biscuit increased with decreasing particle size and increasing substitution level of the residue. The 7.5 % substitution level of the smallest particle size resulted in the darkest dough and biscuit. Spread ratio and diameter of the biscuit decreased with increasing substitution level of the residue. The smallest diameter of 50.61 mm and spread ratio of 8.36 was observed in the biscuits substituted with the largest particle size with 7.5 % substitution level. Microstructural images of dough and biscuit revealed that the continuity of the gluten network was disrupted by the incorporation of the fiber-rich extraction residue. This study provided valuable insights into extracting bioactive components from date by-products using green ultrasonication technique and utilizing such compounds to improve functional attributes of bakery products, as a sustainable approach for valorizing date by-products.

2.
RNA ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981655

RESUMEN

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge of a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA