Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 15(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38133182

RESUMEN

Forage grain contamination with aflatoxin B1 (AFB1) is a global problem, so its detoxification with the aim of providing feed safety and cost-efficiency is still a relevant issue. AFB1 degradation by microbial enzymes is considered to be a promising detoxification approach. In this study, we modified an previously developed Pichia pastoris GS115 expression system using a chimeric signal peptide to obtain a new recombinant producer of extracellular AFB1 oxidase (AFO) from Armillaria tabescens (the yield of 0.3 g/L), purified AFO, and selected optimal conditions for AFO-induced AFB1 removal from model solutions. After a 72 h exposure of the AFB1 solution to AFO at pH 6.0 and 30 °C, 80% of the AFB1 was degraded. Treatments with AFO also significantly reduced the AFB1 content in wheat and corn grain inoculated with Aspergillus flavus. In grain samples contaminated with several dozen micrograms of AFB1 per kg, a 48 h exposure to AFO resulted in at least double the reduction in grain contamination compared to the control, while the same treatment of more significantly (~mg/kg) AFB1-polluted samples reduced their contamination by ~40%. These findings prove the potential of the tested AFO for cereal grain decontamination and suggest that additional studies to stabilize AFO and improve its AFB1-degrading efficacy are required.


Asunto(s)
Aflatoxina B1 , Armillaria , Aflatoxina B1/metabolismo , Oxidorreductasas , Grano Comestible/química , Armillaria/metabolismo
2.
Pathogens ; 12(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37624011

RESUMEN

The antioxidant defense system can be stimulated by growth regulators in plants when they are under stress, such as exposure to pathogens. There are a lot of natural growth regulators on the market, but no research has been carried out yet to determine how effective they are. This field and laboratory study examines the impact of two commonly used Russian growth regulators, Crezacin and Zircon, along with artificial infection with Fusarium culmorum on the antioxidant system of naked oat. The results show that, compared to the control, Crezacin-treated plants had higher contents of low molecular weight fructose and nonenzymatic antioxidants like proline, phenolic compounds, and flavonoids. Zircon-treated plants had a lower content of proline, carbohydrates, and lower total antioxidant activity than the control plants. The obtained data show that Crezacin treatment mainly affected nonenzymatic systems of the antioxidant defense. This treatment was more successful than the Zircon application, which did not show any appreciable effectiveness and was typically associated with an improvement in oat productivity. The treatment with growth regulators and a fungal suspension performed at the flowering phase provided the best effect on the biochemical parameters and productivity of naked oats. Moreover, oat treatment with the pathogen promoted the reproductive capabilities of the plants, while growth regulators helped in avoiding infectious stress.

3.
BioTech (Basel) ; 12(2)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37218749

RESUMEN

Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.

4.
Microorganisms ; 10(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35889066

RESUMEN

Zearalenone (ZEN) and deoxynivalenol (DON) are mycotoxins produced by various species of Fusarium fungi. They contaminate agricultural products and negatively influence human and animal health, thus representing a serious problem of the agricultural industry. Earlier we showed that compactin, a secondary metabolite of Penicillium citrinum, is able to completely suppress the aflatoxin B1 biosynthesis by Aspergillus flavus. Using the F. culmorum strain FC-19 able to produce DON and ZEN, we demonstrated that compactin also significantly suppressed both DON (99.3%) and ZEN (100%) biosynthesis. The possible mechanisms of this suppression were elucidated by qPCR-based analysis of expression levels of 48 biosynthetic and regulatory genes. Expression of eight of 13 TRI genes, including TRI4, TRI5, and TRI101, was completely suppressed. A significant down-regulation was revealed for the TRI10, TRI9, and TRI14 genes. TRI15 was the only up-regulated gene from the TRI cluster. In the case of the ZEN cluster, almost complete suppression was observed for PKS4, PKS13, and ZEB1 genes, and the balance between two ZEB2 isoforms was altered. Among regulatory genes, an increased expression of GPA1 and GPA2 genes encoding α- and ß-subunits of a G-protein was shown, whereas eight genes were down-regulated. The obtained results suggest that the main pathway for a compactin-related inhibition of the DON and ZEN biosynthesis affects the transcription of genes involved in the G-protein-cAMP-PKA signaling pathway. The revealed gene expression data may provide a better understanding of genetic mechanisms underlying mycotoxin production and its regulation.

5.
Pest Manag Sci ; 78(8): 3394-3403, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35514230

RESUMEN

BACKGROUND: Cucumber fruit rot (CFR) caused by Fusarium incarnatum is a devastating fungal disease in cucumber. In recent years, CFR has occurred frequently, resulting in serious yield and quality losses in China. Phenamacril exhibits a specific antifungal activity against Fusarium species. However, no data for phenamacril against F. incarnatum is available. RESULTS: The sensitivity of 80 F. incarnatum strains to phenamacril was determined. The half maximal effective concentration (EC50 ) values ranged from 0.1134 to 0.3261 µg mL-1 with a mean EC50 value of 0.2170 ± 0.0496 µg mL-1 . A total of seven resistant mutants were obtained from 450 mycelial plugs by phenamacril-taming on potato dextrose agar (PDA) plates with 10 µg mL-1 of phenamacril, and the resistant frequency was 1.56%. Phenamacril-resistant mutants showed decreased mycelial growth, conidiation and virulence as compared with the corresponding wild-type strains, indicating that phenamacril resistance suffered a fitness penalty in F. incarnatum. In addition, using sequence analysis, the point mutations of S217P or I424S were discovered in Fimyosin-5 (the target of phenamacril). The site-directed mutagenesis of the S217P, P217S, I424S and S424I substitutions were constructed to reveal the relationship between the point mutations and phenamacril resistance. The results strongly demonstrated that the mutations of S217P and I424S in Fimyosin-5 conferred phenamacril-resistance in F. incarnatum. CONCLUSION: Phenamacril-resistant mutants were easily induced and their resistance level was high. The S217P or I424S substitutions in Fimyosin-5 conferring phenamacril resistance were detected and futherly verified by transformation assay with site-directed mutagenesis. Thus, we proposed that the resistance development of F. incarnatum to phenamacril is high risk. © 2022 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Fusarium , Cianoacrilatos , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Medición de Riesgo
6.
Antibiotics (Basel) ; 9(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255571

RESUMEN

Agricultural fungicides contaminate the environment and promote the spread of fungicide-resistant strains of pathogenic fungi. The enhancement of pathogen sensitivity to these pesticides using chemosensitizers allows the reducing of fungicide dosages without a decrease in their efficiency. Using Petri plate and microplate bioassays, 6-demethylmevinolin (6-DMM), a putative sensitizer of a microbial origin, was shown to affect both colony growth and conidial germination of Alternaria solani, A. alternata, Parastagonospora nodorum, Rhizoctonia solani, and four Fusarium species (F. avenaceum, F. culmorum, F. oxysporum, F. graminearum) forming a wheat root rot complex together with B. sorokiniana. Non- or marginally toxic 6-DMM concentrations suitable for sensitizing effect were determined by the probit analysis. The range of determined concentrations confirmed a possibility of using 6-DMM as a putative sensitizer for the whole complex of root rot agents, other cereal pathogens (A. alternata, P.nodorum), and some potato (R. solani, A. solani) and tomato (A. solani) pathogens. Despite the different sensitivities of the eight tested pathogens, 6-DMM lacked specificity to fungi and possessed a mild antimycotic activity that is typical of other known pathogen-sensitizing agents. The pilot evaluation of the 6-DMM sensitizing first confirmed a principal possibility of using it for the sensitization of B. sorokiniana and R. solani to triazole- and strobilurin-based fungicides, respectively.

7.
Toxins (Basel) ; 12(8)2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722498

RESUMEN

This paper reports the first results on obtaining an enzyme preparation that might be promising for the simultaneous decontamination of plant feeds contaminated with a polyketide fusariotoxin, zearalenone (ZEN), and enhancing the availability of their nutritional components. A novel ZEN-specific lactonohydrolase (ZHD) was expressed in a Penicillium canescens strain PCA-10 that was developed previously as a producer of different hydrolytic enzymes for feed biorefinery. The recombinant ZHD secreted by transformed fungal clones into culture liquid was shown to remove the toxin from model solutions, and was able to decontaminate wheat grain artificially infected with a zearalenone-producing Fusarium culmorum. The dynamics of ZEN degradation depending on the temperature and pH of the incubation media was investigated, and the optimal values of these parameters (pH 8.5, 30 °C) for the ZHD-containing enzyme preparation (PR-ZHD) were determined. Under these conditions, the 3 h co-incubation of ZEN and PR-ZHD resulted in a complete removal of the toxin from the model solutions, while the PR-ZHD addition (8 mg/g of dried grain) to flour samples prepared from the infected ZEN-polluted grain (about 16 µg/g) completely decontaminated the samples after an overnight exposure.


Asunto(s)
Grano Comestible/microbiología , Proteínas Fúngicas/química , Hidrolasas/química , Penicillium/enzimología , Triticum/microbiología , Zearalenona/química , Descontaminación , Grano Comestible/química , Harina/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Fusarium , Penicillium/genética
8.
Pathogens ; 8(1)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699977

RESUMEN

Viral and bacterial diseases of potato cause significant yield loss worldwide. The current data on the occurrence of these diseases in Russia do not provide comprehensive understanding of the phytosanitary situation. Diagnostic systems based on disposable stationary open qPCR micromatrices intended for the detection of eight viral and seven bacterial/oomycetal potato diseases have been used for wide-scale screening of target pathogens to estimate their occurrence in 11 regions of Russia and to assess suitability of the technology for high-throughput diagnostics under conditions of field laboratories. Analysis of 1025 leaf and 725 tuber samples confirmed the earlier reported data on the dominance of potato viruses Y, S, and M in most regions of European Russia, as well as relatively high incidences of Clavibacter michiganensis subsp. sepedonicus, Pectobacterium atrosepticum, and P. carotovorum subsp. carotovorum, and provided detailed information on the phytosanitary status of selected regions and geographical spread of individual pathogens. Information on the occurrence of mixed infections, including their composition, was the first data set of this kind for Russia. The study is the first large-scale screening of a wide range of potato pathogens conducted in network mode using unified methodology and standardized qPCR micromatrices. The data represent valuable information for plant pathologists and potato producers and indicate the high potential of the combined use of matrix PCR technology and network approaches to data collection and analysis with the view to rapidly and accurately assess the prevalence of certain pathogens, as well as the phytosanitary state of large territories.

9.
Biosensors (Basel) ; 8(4)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551630

RESUMEN

Fungal diseases of plants are of great economic importance causing 70⁻80% of crop losses associated with microbial plant pathogens. Advanced on-site disease diagnostics is very important to maximize crop productivity. In this study, diagnostic systems have been developed for simultaneous detection and identification of six fungal pathogens using 48-well microarrays (micromatrices) for qPCR. All oligonucleotide sets were tested for their specificity using 59 strains of target and non-target species. Detection limit of the developed test systems varied from 0.6 to 43.5 pg of DNA depending on target species with reproducibility within 0.3-0.7% (standard deviation). Diagnostic efficiency of test systems with stabilized and freeze-dried PCR master-mixes did not significantly differ from that of freshly prepared microarrays, though detection limit increased. Validation of test systems on 30 field samples of potato plants showed perfect correspondence with the results of morphological identification of pathogens. Due to the simplicity of the analysis and the automated data interpretation, the developed microarrays have good potential for on-site use by technician-level personnel, as well as for high-throughput monitoring of fungal potato pathogens.


Asunto(s)
Hongos/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Solanum tuberosum/microbiología , Hongos/genética , Límite de Detección , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
10.
AIMS Microbiol ; 4(1): 192-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294210

RESUMEN

Use of chemical pesticides poses a threat for environment and human health, so green technologies of crop protection are of high demand. Some microbial proteins able to activate plant defense mechanisms and prevent the development of resistance in plant pathogens, may be good alternative to chemicals, but practical use of such elicitors is limited due to need to protect them against adverse environment prior their delivery to target receptors of plant cells. In this study we examined a possibility to encapsulate heat resistant FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) from Pseudomonas fluorescens, which possesses a significant eliciting activity in relation to a range of plant pathogens, in sodium alginate microparticles and evaluated the stability of resulted complex under long-term UV irradiation and in the presence of proteinase K, as well as its eliciting activity in three different "plant-pathogen" models comparing to that of free PPIase. The obtained PPIase-containing microparticles consisted of 70% of sodium alginate, 20% of bovine serum albumin, and 10% of PPIase. In contrast to free PPIase, which lost its eliciting properties after 8-h UV treatment, encapsulated PPIase kept its eliciting ability unchanged; after being exposed to proteinase K, its eliciting ability twice exceeded that of free PPIase. Using "tobacco-TMV", "tobacco-Alternaria longipes", and "wheat-Stagonospora nodorum" model systems, we showed that encapsulation process did not influence on the eliciting activity of PPIase. In the case of the "wheat-S. nodorum" model system, we also observed a significant eliciting activity of alginate-albumin complex and almost doubled activity of encapsulated PPIase as compared to the free PPIase. As far as we know, this is the first observation of a synergistic interaction between alginate and other compound possessing any bioactive properties. The results of the study show some prospects for a PPIase use in agriculture.

11.
AIMS Microbiol ; 4(4): 608-621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294237

RESUMEN

Nisin A belonging to the class I bacteriocins and produced by Lactococcus lactis subsp. lactis is widely used in many countries as highly efficient and safe preservative preventing growth of undesirable bacteria in food products. Though this compound is efficient at very low concentrations, reduction of its manufacturing cost is still relevant problem. An increased nisin A production requires improved resistance of its producer to nisin. According to some studies, mechanisms of microbial resistance to nisin A and bacitracin have a similar basis, and the same transporters are used to export these antibiotics from cells. To obtain strains with improved growth rate and nisin A productivity, selection of spontaneous bacitracin-resistant L. lactis mutants followed by examination of their stability as well as physiological and fermentation characteristics was carried out. Spontaneous mutants were obtained by culturing of L. lactis VKPM B-2092 strain on selective bacitracin-containing agar medium. The obtained bacitracin-resistant strain FL-75 was characterized by accelerated growth rate, doubled biomass accumulation, and improved nisin A resistance. The nisin A productivity of FL-75 exceeded that of the parental strain by 25% reaching 8902 U/mL after 14-h cultivation. In addition, FL-75 was characterized by the improved resistance to oxidative stress that has never been reported earlier for bacitracin-resistant microorganisms. Based on the performed characterization of FL-75, we can consider it as a new independent strain promising for the industrial production of food and feed biopreservatives. Comparison of published data and the obtained results allowed us to suppose that the bacitracin resistance mutation in FL-75 is determined rather by an increased expression of a gene homologous to the bcrC gene of Bacillus sp. than by the activation of multidrug resistance mechanisms. The revealed resistance of FL-75 to bacitracin and oxidative stress can be regulated by a common transcription factor activating in response to various environmental stresses.

12.
Toxins (Basel) ; 8(11)2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801823

RESUMEN

Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds-three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)-were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus. All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 µg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 µg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus/metabolismo , Lovastatina/análogos & derivados , Melaninas/biosíntesis , Pigmentación/efectos de los fármacos , Aflatoxina B1/análisis , Antifúngicos/farmacología , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Benzaldehídos/farmacología , Fluconazol/farmacología , Lovastatina/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Timol/farmacología , Triticum/química , Zea mays/química
13.
Jundishapur J Microbiol ; 8(1): e24324, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25789135

RESUMEN

BACKGROUND: Aflatoxin B1 (AFB1), produced by Aspergillus flavus, is one of the most life threatening food contaminants causing significant economic losses worldwide. Biological AFB1 degradation by microorganisms, or preferably microbial enzymes, is considered as one of the most promising approaches. OBJECTIVES: The current work aimed to study the AFB1-degrading metabolites, produced by Phoma glomerata PG41, sharing a natural substrate with aflatoxigenic A. flavus, and the preliminary determination of the nature of these metabolites. MATERIALS AND METHODS: The AFB1-degrading potential of PG41 metabolites was determined by a quantitative high performance liquid chromatography (HPLC) of residual AFB1 after 72 hours incubation at 27ºC. The effects of pH, heat, and protease treatment on the AFB1-destroying activity of extracellular metabolites were examined. RESULTS: The AFB1-degrading activity of protein-enriched fractions, isolated from culture liquid filtrate and cell-free extract, is associated with high-molecular-weight components, is time- and pH-dependent, thermolabile, and is significantly reduced by proteinase K treatment. The AFB1 degradation efficiency of these fractions reaches 78% and 66%, respectively. CONCLUSIONS: Phoma glomerata PG41 strain sharing natural substrate with toxigenic A. flavus secretes metabolites possessing a significant aflatoxin-degrading activity. The activity is associated mainly with a protein-enriched high-molecular-weight fraction of extracellular metabolites and appears to be of enzymatic origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...