Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235355

RESUMEN

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

2.
Mar Pollut Bull ; 175: 113344, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35124379

RESUMEN

Louisiana estuaries are important habitats in the northern Gulf of Mexico, a region undergoing significant and sustained human- and climate-driven changes. This paper synthesizes data collected over multiple years from four Louisiana estuaries - Breton Sound, Terrebonne Bay, the Atchafalaya River Delta Estuary, and Vermilion Bay - to characterize trends in phytoplankton biomass, community composition, and the environmental factors influencing them. Results highlight similarities in timing and composition of maximum chlorophyll, with salinity variability often explaining biomass trends. Distinct drivers for biomass versus community structure were observed in all four estuarine systems. Systems shared a lack of significant correlation between river discharge and overall phytoplankton biomass, while discharge was important for understanding community composition. Temperature was a significant explanatory variable for both biomass and community composition in only one system. These results provide a regional view of phytoplankton dynamics in Louisiana estuaries critical to understanding and predicting the effects of ongoing change.


Asunto(s)
Estuarios , Fitoplancton , Biomasa , Cambio Climático , Humanos , Louisiana , Fitoplancton/crecimiento & desarrollo , Ríos , Salinidad
3.
PLoS One ; 10(6): e0131246, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110822

RESUMEN

Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.


Asunto(s)
Biomasa , Frío , Ecosistema , Cadena Alimentaria , Fitoplancton/fisiología , Alaska , Regiones Árticas , Clima , Geografía , Hielo , Oceanografía , Océano Pacífico , Dinámica Poblacional , Estaciones del Año , Temperatura
4.
Appl Environ Microbiol ; 74(22): 6931-40, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18820052

RESUMEN

A new immunologically based flow cytometry (IFCM) technique was developed to enumerate Aureococcus anophagefferens, a small pelagophyte alga that is the cause of "brown tides" in bays and estuaries of the mid-Atlantic states along the U.S. coast. The method utilizes a monoclonal antibody conjugated to fluorescein isothiocyanate (FITC-MAb) to label the surface of A. anophagefferens cells which are then detected and enumerated by using a flow cytometer. Optimal conditions for FITC-MAb staining, including solution composition, incubation times, and FITC-MAb concentrations, were determined. The FITC-MAb method was tested for cross-reactivity with nontarget, similarly sized, photoautotrophic protists, and the method was compared to an enzyme-linked immunosorbent assay (ELISA) using the same MAb. Comparisons of the IFCM technique to traditional microscopy enumeration of cultures and spiked environmental samples showed consistent agreement over several orders of magnitude (r(2) > 0.99). Comparisons of the IFCM and ELISA techniques for enumerating cells from a predation experiment showed a substantial overestimation (up to 10 times higher) of the ELISA in the presence of consumers of A. anophagefferens, presumably due to egested cell fragments that retained antigenicity, using the ELISA method, but were not characterized as whole algal cells by the IFCM method. Application of the IFCM method to environmental "brown-tide" samples taken from the coastal bays of Maryland demonstrated its efficacy in resolving A. anophagefferens abundance levels throughout the course of a bloom and over a large range of abundance values. IFCM counts of the brown-tide alga from natural samples were consistently lower than those obtained using the ELISA method and were equivalent to those of the polyclonal immunofluorescence microscopy technique, since both methods discriminate intact cells. Overall, the IFCM approach was an accurate and relatively simple technique for the rapid enumeration of A. anophagefferens in natural samples over a wide range of abundance values (10(3) to 10(6) cells ml(-1)).


Asunto(s)
Eucariontes/aislamiento & purificación , Citometría de Flujo/métodos , Técnicas Microbiológicas/métodos , Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Maryland , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Microbiología del Agua
5.
IEEE Trans Nanobioscience ; 5(3): 149-56, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16999239

RESUMEN

Aureococcus anophagefferens, a harmful bloom-forming alga responsible for brown tides in estuaries of the Middle Atlantic U.S., has been investigated by atomic force microscopy for the first time, using probes functionalized with a monoclonal antibody specific for the alga. The rupture force between a single monoclonal antibody and the surface of A. anophagefferens was experimentally found to be 246 +/- 11 pN at the load rate of 12 nN/s. Force histograms for A. anophagefferens and other similarly-sized algae are presented and analyzed. The results illustrate the effects of load rates, and demonstrate that force-distance measurements can be used to build biosensors with high signal-to-noise ratios for A. anophagefferens. The methods described in this paper can be used, in principle, to construct sensors with single-cell resolution for arbitrary cells for which monoclonal antibodies are available.


Asunto(s)
Complejo Antígeno-Anticuerpo/análisis , Bioensayo/métodos , Técnicas Biosensibles/métodos , Eutrofización , Inmunoensayo/métodos , Microscopía de Fuerza Atómica/métodos , Phaeophyceae/aislamiento & purificación , Complejo Antígeno-Anticuerpo/inmunología , Técnicas Biosensibles/instrumentación , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Inmunoensayo/instrumentación , Phaeophyceae/clasificación , Phaeophyceae/inmunología , Proyectos Piloto , Estrés Mecánico , Transductores
6.
Microb Ecol ; 52(1): 136-50, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16691324

RESUMEN

A new method based on quantitative real-time polymerase chain reaction (qPCR) was developed and applied to quantify the red tide dinoflagellate Lingulodinium polyedrum in natural seawater samples and in laboratory cultures. The method uses a Molecular Beacontrade mark approach to target a species-specific region of the small subunit ribosomal RNA gene. The accuracy of the method was verified by microscopical counts using cultures of the dinoflagellate isolated from coastal waters near Los Angeles, CA, and with natural water samples spiked with cultured L. polyedrum. The method was applied to document the pattern and timing of vertical migration by the dinoflagellate in a 2-m water column on an 11:13 h light/dark photoperiod established in the laboratory. Positive phototaxis of L. polyedrum resulted in dense aggregations of the dinoflagellate within the top few centimeters of the water column during the light period. This pattern of distribution was readily established by both methods, although abundances of L. polyedrum determined using qPCR were higher than abundances determined by microscopy in the morning and lower in the afternoon and evening. These differences may have been a consequence of variability in the DNA content per cell because of synchrony of cell division. Counts using both methods to analyze natural samples collected from coastal waters in the Long Beach-Los Angeles area and adjacent San Pedro Channel were in close agreement. However, the qPCR method exhibited greater sensitivity than the microscopical method when L. polyedrum was present at low abundances, and qPCR had a much higher rate of sample throughput than microscopy. The development of this new approach for enumerating L. polyedrum provides a useful tool for studying the ecology of this important red tide species.


Asunto(s)
Dinoflagelados/aislamiento & purificación , Dinoflagelados/fisiología , Reacción en Cadena de la Polimerasa , Agua de Mar/parasitología , Animales , California , Dinoflagelados/genética , Datos de Secuencia Molecular , Fitoplancton/genética , Fitoplancton/aislamiento & purificación , ARN Ribosómico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...