Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812264

RESUMEN

Increasing atmospheric CO2 is changing the dynamics of tropical savanna vegetation. C3 trees and grasses are known to experience CO2 fertilization, whereas responses to CO2 by C4 grasses are more ambiguous. Here, we sample stable carbon isotope trends in herbarium collections of South African C4 and C3 grasses to reconstruct 13C discrimination. We found that C3 grasses showed no trends in 13C discrimination over the past century but that C4 grasses increased their 13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2 rather than to trends in rainfall climatology or temperature. Combined with previously published evidence that grass biomass has increased in C4-dominated savannas, these trends suggest that increasing water-use efficiency due to CO2 fertilization may be changing C4 plant-water relations. CO2 fertilization of C4 grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems.

2.
Ecol Lett ; 26(7): 1237-1246, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37161930

RESUMEN

Fire-vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.


Asunto(s)
Ecosistema , Incendios , Pradera , Árboles/fisiología , Bosques , Clima
3.
Ecology ; 104(2): e3905, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36314967

RESUMEN

Termites consume substantial amounts of plant material across tropical and subtropical ecosystems. During the process of lignocellulose digestion, the symbiotic methanogenesis within termites' guts produces the potent greenhouse gas methane (CH4 ). Termites contribute an estimated 1%-5% of global CH4 emissions, with these estimates derived from the product of termite biomass and termite CH4 production rate per unit of termite biomass. However, termite CH4 production rates vary significantly across species, genus, family, and feeding group, yet our understanding of this variation remains poor. Here, we reviewed papers published from 1975 to 2021 to create a single consistently derived list of species-level termite CH4 production rates. We searched the Google Scholar using two key words: termite and methane. We only included studies that had measured termite CH4 production rates using the incubation method. For each eligible study, we extracted and tabulated termite CH4 production rates and other relevant variables (e.g., feeding groups). We used µg CH4 g-1 (termite) h-1 as the standardized unit, and if other units were presented, we converted them into this standardized unit. Overall, these data include 134 termite species from 65 genera and 5 families. Termite CH4 production rates ranged from 0 to 25.26 µg CH4 g-1 (termite) h-1 , with an average rate of 3.74 (standard deviation = 4.08, n = 251). Reported CH4 production rates were largely concentrated in the family Termitidae. Across feeding groups, soil feeders tended to have higher CH4 production rates than wood feeders. However, published data represent fewer than 5% of described termite species, and therefore we hope that our study will initiate a community-wide effort to fill data gaps and advance our understanding of the role of termites in critical biogeochemical cycles and other ecosystem processes. The data set is in the public domain under a Creative Commons Zero (CC0) license waiver.


Asunto(s)
Ecosistema , Isópteros , Animales , Madera , Biomasa , Metano
4.
Science ; 377(6606): 592-593, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926015

RESUMEN

Grassy biomes are >20 million years old but are undervalued and under threat today.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Poaceae
5.
Ecology ; 103(11): e3807, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35811475

RESUMEN

The biogeochemical signature of fire shapes the functioning of many ecosystems. Fire changes nutrient cycles not only by volatilizing plant material, but also by altering organic matter decomposition, a process regulated by soil extracellular enzyme activities (EEAs). However, our understanding of fire effects on EEAs and their feedbacks to nutrient cycles is incomplete. We conducted a meta-analysis with 301 field studies and found that fire significantly decreased EEAs by ~20%-40%. Fire decreased EEAs by reducing soil microbial biomass and organic matter substrates. Soil nitrogen-acquiring EEA declined alongside decreasing available nitrogen, likely from fire-driven volatilization of nitrogen and decreased microbial activity. Fire decreased soil phosphorus-acquiring EEA but increased available phosphorus, likely from pyro-mineralization of organic phosphorus. These findings suggest that fire suppresses soil microbes and consumes their substrates, thereby slowing microbially mediated nutrient cycles (especially phosphorus) via decreased EEAs. These changes can become increasingly important as fire frequency and severity in many ecosystems continue to shift in response to global change.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Carbono , Nitrógeno/análisis , Fósforo , Nutrientes/análisis
6.
Proc Natl Acad Sci U S A ; 119(26): e2110364119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733267

RESUMEN

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.


Asunto(s)
Ecosistema , Poaceae , Incendios Forestales , Clima , Cambio Climático , Modelos Teóricos , Sudáfrica
7.
Proc Natl Acad Sci U S A ; 119(20): e2101186119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533276

RESUMEN

Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate­fire­carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO2 emissions at today's levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate­carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.


Asunto(s)
Incendios , Calentamiento Global , Carbono , Dióxido de Carbono , Cambio Climático , Demografía , Ecosistema , Humanos
8.
Nature ; 603(7901): 445-449, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296846

RESUMEN

Savannas cover a fifth of the land surface and contribute a third of terrestrial net primary production, accounting for three-quarters of global area burned and more than half of global fire-driven carbon emissions1-3. Fire suppression and afforestation have been proposed as tools to increase carbon sequestration in these ecosystems2,4. A robust quantification of whole-ecosystem carbon storage in savannas is lacking however, especially under altered fire regimes. Here we provide one of the first direct estimates of whole-ecosystem carbon response to more than 60 years of fire exclusion in a mesic African savanna. We found that fire suppression increased whole-ecosystem carbon storage by only 35.4 ± 12% (mean ± standard error), even though tree cover increased by 78.9 ± 29.3%, corresponding to total gains of 23.0 ± 6.1 Mg C ha-1 at an average of about 0.35 ± 0.09 Mg C ha-1 year-1, more than an order of magnitude lower than previously assumed4. Frequently burned savannas had substantial belowground carbon, especially in biomass and deep soils. These belowground reservoirs are not fully considered in afforestation or fire-suppression schemes but may mean that the decadal sequestration potential of savannas is negligible, especially weighed against concomitant losses of biodiversity and function.


Asunto(s)
Ecosistema , Incendios , Carbono , Pradera , Árboles
9.
J Anim Ecol ; 91(3): 681-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921402

RESUMEN

Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale. The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality. We evaluated the distribution of seasonal dietary shifts and migration across large-bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment. We found that herbivore strategies were consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a role, particularly for migration, which was more common at higher latitudes. Both dietary shifts and migration were more widespread among extratropical herbivores, which also exhibited more intermediate diets and body sizes. Our findings suggest that strong seasonality in extratropical systems imposes pressure on herbivores, necessitating widespread behavioural responses to navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may have divergent responses to global change, with intensifying herbivore pressure in extratropical systems contrasting with diminishing herbivore pressure in tropical systems.


Asunto(s)
Clima , Herbivoria , Animales , Mamíferos/fisiología , Estaciones del Año , Suelo
10.
Science ; 374(6571): 1145-1148, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822271

RESUMEN

Fire activity varies substantially at global scales because of the influence of climate, but at broad spatiotemporal scales, the possible effects of herbivory on fire activity are unknown. Here, we used late Quaternary large-bodied herbivore extinctions as a global exclusion experiment to examine the responses of grassy ecosystem paleofire activity (through charcoal proxies) to continental differences in extinction severity. Grassy ecosystem fire activity increased in response to herbivore extinction, with larger increases on continents that suffered the largest losses of grazers; browser declines had no such effect. These shifts suggest that herbivory can have Earth system­scale effects on fire and that herbivore impacts should be explicitly considered when predicting changes in past and future global fire activity.

11.
Ecol Appl ; 31(8): e02437, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374155

RESUMEN

Widespread woody encroachment is a prominent concern for savanna systems as it is often accompanied by losses in productivity and biodiversity. Extensive ecosystem-level work has advanced our understanding of its causes and consequences. However, there is still debate over whether local management can override regional and global drivers of woody encroachment, and it remains largely unknown how encroachment influences woody community assemblages. Here, we examined species-level changes in woody plant distributions and size structure from the late 1980s to the late 2000s based on spatially intensive ground-based surveys across Kruger National Park, South Africa. This study region spans broad gradients in rainfall, soil texture, fire frequency, elephant density, and other topographic variables. Species-level changes in frequency of occurrence and size class proportion reflected widespread woody encroachment primarily by Dichrostachys cinerea and Combretum apiculatum, and a loss of large trees mostly of Sclerocarya birrea and Acacia nigrescens. Environmental variables determining woody species distributions across Kruger varied among species but did not change substantially between two sampling times, indicating that woody encroachers were thickening within their existing ranges. Overall, more areas across Kruger were found to have an increased number of common woody species through time, which indicated an increase in stem density. These areas were generally associated with decreasing fire frequency and rainfall but increasing elephant density. Our results suggest that woody encroachment is a widespread but highly variable trend across landscapes in Kruger National Park and potentially reflects an erosion of local heterogeneity in woody community assemblages. Many savanna managers, including in Kruger, aim to manage for heterogeneity in order to promote biodiversity, where homogenization of vegetation structure counters this specific goal. Increasing fire frequency has some potential as a local intervention. However, many common species increased in commonness even under near-constant disturbance conditions, which likely limits the potential for managing woody encroachment in the face of drivers beyond the scope of local control. Regular field sampling coupled with targeted fire management will enable more accurate monitoring of the rate of encroachment intensification.


Asunto(s)
Ecosistema , Incendios , Pradera , Árboles , Madera
12.
Ecol Evol ; 11(10): 5624-5634, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026034

RESUMEN

Though elephants are a major cause of savanna tree mortality and threaten vulnerable tree species, managing their impact remains difficult, in part because relatively little is known about how elephant impacts are distributed throughout space.This is exacerbated by uncertainty about what determines the distribution of elephants themselves, as well as whether the distribution of elephants is even informative for understanding the distribution of their impacts.To better understand the factors that underlie elephant impacts, we modeled elephant distributions and their damage to trees with respect to soil properties, water availability, and vegetation in Kruger National Park, South Africa, using structural equation modeling.We found that bull elephants and mixed herds differed markedly in their distributions, with bull elephants concentrating in sparsely treed basaltic sites close to artificial waterholes and mixed herds aggregating around permanent rivers, particularly in areas with little grass.Surprisingly, we also found that the distribution of elephant impacts, while highly heterogeneous, was largely unrelated to the distribution of elephants themselves, with damage concentrated instead in densely treed areas and particularly on basaltic soils.Results underscore the importance of surface water for elephants but suggest that elephant water dependence operates together with other landscape factors, particularly vegetation community composition and historical management interventions, to influence elephant distributions.

13.
Ecol Lett ; 24(5): 1007-1017, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33694319

RESUMEN

Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2  = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.


Asunto(s)
Ecosistema , Incendios , Bosques , Pradera , Árboles
14.
Nat Ecol Evol ; 5(4): 504-512, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33633371

RESUMEN

Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits.


Asunto(s)
Incendios , Árboles , Ecosistema , Bosques , Suelo
15.
Sci Adv ; 6(40)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33008899

RESUMEN

African savannas are home to the world's last great megafaunal communities, but despite ongoing population declines, we only poorly understand the constraints on savanna herbivore abundances. Seasonal diet shifts (except migration) have received little attention, despite a diversity of possible dietary strategies. Here, we first formulate two theoretical models that predict that both mixed feeding and migratory grazing increase population sizes. These predictions are borne out in comprehensive data across African savanna parks: Mixed feeders are the most abundant herbivores in Africa, alongside a few migratory grazer populations. Overall, clear mixed-feeder dominance may reflect a historical pattern or may instead mirror a general global decline in specialists. Regardless, mixed feeders dominate the savannas of the present and future.


Asunto(s)
Pradera , Herbivoria , Dieta , Ecosistema , Estaciones del Año
16.
Ecology ; 101(12): e03177, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32880924

RESUMEN

Madagascar is regarded by some as one of the most degraded landscapes on Earth, with estimates suggesting that 90% of forests have been lost to indigenous Tavy farming. However, the extent of this degradation has been challenged: paleoecological data, phylogeographic analysis, and species richness indicate that pyrogenic savannas in central Madagascar predate human arrival, even though rainfall is sufficient to allow forest expansion into central Madagascar. These observations raise a question-if savannas in Madagascar are not anthropogenic, how then are they maintained in regions where the climate can support forest? Observation reveals that the savanna-forest boundary coincides with a dispersal barrier-the escarpment of the Central Plateau. Using a stepping-stone model, we show that in a limited dispersal landscape, a stable savanna-forest boundary can form because of fire-vegetation feedbacks. This phenomenon, referred to as range pinning, could explain why eastern lowland forests have not expanded into the mesic savannas of the Central Highlands. This work challenges the view that highland savannas in Madagascar are derived by human-lit fires and, more importantly, suggests that partial dispersal barriers and strong nonlinear feedbacks can pin biogeographical boundaries over a wide range of environmental conditions, providing a temporary buffer against climate change.


Asunto(s)
Incendios , Pradera , Ecosistema , Retroalimentación , Bosques , Humanos , Madagascar , Árboles , Clima Tropical
17.
Am Nat ; 195(5): 833-850, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32364792

RESUMEN

Global change may induce changes in savanna and forest distributions, but the dynamics of these changes remain unclear. Classical biome theory suggests that climate is predictive of biome distributions, such that shifts will be continuous and reversible. This view, however, cannot explain the overlap in the climatic ranges of tropical biomes, which some argue may result from fire-vegetation feedbacks, maintaining savanna and forest as bistable states. Under this view, biome shifts are argued to be discontinuous and irreversible. Mean-field bistable models, however, are also limited, as they cannot reproduce the spatial aggregation of biomes. Here we suggest that both models ignore spatial processes, such as dispersal, which may be important when savanna and forest abut. We examine the contributions of dispersal to determining biome distributions using a 2D reaction-diffusion model, comparing results qualitatively to empirical savanna and forest distributions in sub-Saharan Africa. We find that the diffusion model resolves both the aforementioned limitations of biome models. First, local dispersive spatial interactions, with an underlying precipitation gradient, can reproduce the spatial aggregation of biomes with a stable savanna-forest boundary. Second, the boundary is determined not only by the amount of precipitation but also by the geometrical shape of the precipitation contours. These geometrical effects arise from continental-scale source-sink dynamics, which reproduce the mismatch between biome and climate. Dynamically, the spatial model predicts that dispersal may increase the resilience of tropical biome in response to global change: the boundary continuously tracks climate, recovering following disturbances, unless the remnant biome patches are too small.


Asunto(s)
Bosques , Pradera , Dispersión de las Plantas , Clima Tropical , África del Sur del Sahara , Modelos Biológicos
18.
Proc Biol Sci ; 286(1914): 20191755, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662079

RESUMEN

Tree cover differentiates forests from savannas and grasslands. In tropical floodplains, factors differentiating these systems are poorly known, even though floodplains cover 10% of the tropical landmass. Seasonal inundation potentially presents trees with both challenges (soil anoxia) and benefits (moisture and nutrient deposition), the relative importance of which may depend on ecological context, e.g. if floods alleviate water stress more in more arid ecosystems. Here, we use remotely sensed data across 13 large tropical and sub-tropical floodplain ecosystems on five continents to show that climatic water balance (i.e. precipitation-potential evapotranspiration) strongly increases floodplain tree cover in interaction with flooding, fire and topography. As predicted, flooding increases tree cover in more arid floodplains, but decreases tree cover in climatically wetter ones. As in uplands, frequent fire reduced tree cover, particularly in wet regions, but-in contrast with uplands-lower elevation and sandier soils decreased tree cover. Our results suggest that predicting the impacts of changing climate, land use and hydrology on floodplain ecosystems depends on considering climate-disturbance interactions. While outright wetland conversion proceeds globally, additional anthropogenic activities, including alteration of fire frequencies and dam construction, will also shift floodplain tree cover, especially in wet climates.


Asunto(s)
Cambio Climático , Ecosistema , Árboles , Inundaciones , Bosques
19.
Science ; 366(6463)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624182

RESUMEN

Bastin et al's estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.


Asunto(s)
Suelo , Árboles , Carbono , Secuestro de Carbono , Cambio Climático
20.
Ecol Evol ; 9(12): 7047-7056, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380032

RESUMEN

Climate models predict increases in drought frequency and severity worldwide, with potential impacts on diverse systems, including African savannas. These droughts pose a concern for the conservation of savanna mammal communities, such that understanding how different species respond to drought is vital.Because grass decreases so consistently during droughts, we predict that grass-dependent species (grazers and mixed feeders) will respond strongly to drought, whether by changing diets, seeking drought refugia, or suffering mortality.A recent severe but heterogeneous drought in Kruger National Park, South Africa, afforded a rare opportunity to test these hypotheses in situ-crucial, given the central role of landscape-scale movement as a potential herbivore strategy. We used herbivore dung as a proxy, integrating spatial distributions (dung counts) with diet composition (carbon isotope analysis of dung).As predicted, browsers showed little response to drought. However, mixed feeders switched their diets to incorporate more C3 trees/forbs, but did not move. Meanwhile, grazers and megaherbivores instead moved toward drought refugia. Synthesis and applications: The responses we observed by savanna herbivores are largely amplifications of typical dry season strategies and reflect constraints imposed by body size and feeding ecology. Grazers may be at particular risk from increased drought frequency and spatial extent if drought refugia become decreasingly available. Conservation strategies should recognize these constraints and work to facilitate the diverse responses of herbivores to drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...