Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809979

RESUMEN

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Asunto(s)
Acetatos , Linfocitos T CD8-positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Acetatos/metabolismo , Ratones , Listeriosis/metabolismo , Listeriosis/inmunología , Listeriosis/microbiología , Listeria monocytogenes , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Ratones Endogámicos C57BL
2.
bioRxiv ; 2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333111

RESUMEN

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

3.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082276

RESUMEN

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirimidinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Genómica/métodos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/patología , Humanos , Estadificación de Neoplasias , Proteómica/métodos
4.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023446

RESUMEN

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Metionina , Esclerosis Múltiple , Células Th17/metabolismo , Animales , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacología , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Células Th17/citología
5.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747582

RESUMEN

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Activación de Linfocitos/inmunología , Metaboloma , Metabolómica , Animales , Proliferación Celular , Cromatografía de Gases y Espectrometría de Masas , Glucólisis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/genética , Metabolómica/métodos , Ratones , Estrés Oxidativo , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
7.
Nat Med ; 24(8): 1192-1203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988124

RESUMEN

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.


Asunto(s)
Glutaratos/metabolismo , Inmunidad , Linfocitos T/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/genética , Glioma/inmunología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Mutación/genética , Factores de Transcripción NFATC/metabolismo , Comunicación Paracrina , Poliaminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
8.
J Clin Invest ; 128(2): 789-804, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355841

RESUMEN

Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q-mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Isocitrato Deshidrogenasa/genética , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Anciano , Animales , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Fenotipo , Células Madre
9.
Nat Cell Biol ; 19(6): 614-625, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504706

RESUMEN

Adult and fetal haematopoietic stem cells (HSCs) display a glycolytic phenotype, which is required for maintenance of stemness; however, whether mitochondrial respiration is required to maintain HSC function is not known. Here we report that loss of the mitochondrial complex III subunit Rieske iron-sulfur protein (RISP) in fetal mouse HSCs allows them to proliferate but impairs their differentiation, resulting in anaemia and prenatal death. RISP-null fetal HSCs displayed impaired respiration resulting in a decreased NAD+/NADH ratio. RISP-null fetal HSCs and progenitors exhibited an increase in both DNA and histone methylation associated with increases in 2-hydroxyglutarate (2HG), a metabolite known to inhibit DNA and histone demethylases. RISP inactivation in adult HSCs also impaired respiration resulting in loss of quiescence concomitant with severe pancytopenia and lethality. Thus, respiration is dispensable for adult or fetal HSC proliferation, but essential for fetal HSC differentiation and maintenance of adult HSC quiescence.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular , Complejo III de Transporte de Electrones/metabolismo , Metabolismo Energético , Células Madre Fetales/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Mitocondrias/metabolismo , Células Madre Adultas/patología , Anemia/sangre , Anemia/genética , Animales , Muerte Celular , Células Cultivadas , Senescencia Celular , Transporte de Electrón , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Epigénesis Genética , Femenino , Células Madre Fetales/patología , Genotipo , Glutaratos/metabolismo , Células Madre Hematopoyéticas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , NAD/metabolismo , Fenotipo , Embarazo , Transducción de Señal , Factores de Tiempo
10.
J Inherit Metab Dis ; 39(6): 807-820, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27469509

RESUMEN

D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.


Asunto(s)
Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Cardiomiopatías/tratamiento farmacológico , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Encefalopatías Metabólicas Innatas/genética , Modelos Animales de Enfermedad , Isocitrato Deshidrogenasa/genética , Ratones , Mutación/genética
11.
PLoS One ; 9(12): e115144, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25502225

RESUMEN

Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Glutaminasa/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Estrés Oxidativo/efectos de los fármacos , Sulfuros/farmacología , Tiadiazoles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Estudios de Asociación Genética , Glutaminasa/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...