Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(3): e9880, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911311

RESUMEN

Habitat heterogeneity is a key driver of the diversity and distribution of species. African savannas are experiencing changes in their vegetation structure causing shifts towards increased woody plant cover, which results in vegetation structure homogenization. Given the impact that increasing woody plant cover has on patterns of animal use, resource managers across Africa are implementing habitat management practices that are intended to reduce woody plant cover. To understand the ecological implications of various habitat management practices on arthropod and bird communities, we leveraged large-scale tree clearing and subsequent mowing in an African savanna to understand how changes in both the herbaceous layer and woody plant cover (i.e., structural heterogeneity) may shape arthropod and bird communities at the local scale. We focused on four replicated treatments: (1) annual summer mow, (2) annual winter mow, (3) >5 years since last mow (rest), and (4) an adjacent unmanipulated savanna to act as a control. We found that the mowing treatments significantly influenced vegetation structure both with respect to tree density and herbaceous layer. Both arthropod and bird community composition varied across treatments. Grass biomass was the best predictor of arthropod richness and abundance, with arthropods selecting for areas with high biomass. Insectivorous bird richness and abundance was driven by tree density (i.e., perching locations) and not arthropod abundance. Our results suggest that vegetation management practices contribute to habitat heterogeneity at the landscape scale and increase bird species richness through species turnover. However, we caution that if a single vegetation management practice dominates the landscape, it is plausible that it could lead to the simplification of the avian community.

2.
PLoS One ; 17(8): e0273917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044453

RESUMEN

African savannas are experiencing anthropogenically-induced stressors that are accelerating the increase of woody vegetation cover. To combat this, land managers frequently implement large-scale clearing of trees, which can have a cascading influence on mammalian herbivores. Studies rarely focus on how differences in woody cover influence the herbivore assemblage, making it difficult to assess how aggressive measures, or the lack of management, to counteract increasing woody cover affect the local composition and biodiversity of herbivores. We address this knowledge gap by applying a model-based clustering approach to field observations from MalaMala Game Reserve, South Africa to identify multiple herbivore-vegetation 'configurations,' defined as unique sets of herbivore assemblages (i.e., groups of herbivores) associated with differing woody plant covers. Our approach delineated how tree-clearing influences the distribution and abundance of the herbivore community in relation to surrounding savanna areas, which represent a natural mosaic of varying woody cover. Regardless of season, both intensively managed areas cleared of trees and unmanaged areas with high tree cover contained configurations that had depauperate assemblages of herbivores (low species richness, low abundance). By contrast, habitats with intermediate cover of woody vegetation had much higher richness and abundance. These results have substantial implications for managing African savannas in a rapidly changing climate.


Asunto(s)
Ecosistema , Herbivoria , Animales , Pradera , Mamíferos , Árboles , Madera
3.
PLoS One ; 15(7): e0236895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32735578

RESUMEN

Many studies on the coexistence of wildlife with livestock have focused primarily on similar-sized species. Furthermore, many of these studies have used dietary overlap as a measure of potential competition between interacting species and thus lack the important link between dietary overlap and any negative effects on a particular species-a prerequisite for competition. Consequently, the mechanisms that drive interspecific interactions between wildlife and cattle are frequently overlooked. To address this, we used an experimental setup where we leveraged different cattle stocking rates across two seasons to identify the drivers of interspecific interactions (i.e. competition and facilitation) between smaller-bodied oribi antelope and cattle. Using direct foraging observations, we assessed dietary overlap and grass regrowth, and also calculated oribi nutritional intake rates. Ultimately, we found that cattle compete with, and facilitate, smaller-bodied oribi antelope through bottom-up control. Specifically, cattle facilitated oribi during the wet season, irrespective of cattle stocking density, because cattle foraging produced high-quality grass regrowth. In contrast, during the dry season, cattle and oribi did not co-exist in the same areas (i.e. no direct dietary overlap). Despite this, we found that cattle foraging at high densities during the previous wet season reduced the dry season availability of oribi's preferred grass species. To compensate, oribi expanded their dry season diet breadth and included less palatable grass species, ultimately reducing their nutritional intake rates. Thus, cattle competed with oribi through a delayed, across-season habitat modification. We show that differences in body size alone may not be able to offset competitive interactions between cattle and wildlife. Finally, understanding the mechanisms that drive facilitation and competition are key to promoting co-existence between cattle and wildlife.


Asunto(s)
Antílopes/fisiología , Conducta Alimentaria , Ganado/fisiología , Animales , Animales Salvajes/fisiología , Tamaño Corporal , Bovinos , Conservación de los Recursos Naturales , Dieta/veterinaria , Ecología , Ecosistema , Herbivoria/fisiología , Poaceae , Estaciones del Año , Sudáfrica
4.
Proc Biol Sci ; 287(1922): 20192555, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126952

RESUMEN

Prey anti-predator behaviours are influenced by perceived predation risk in a landscape and social information gleaned from herd mates regarding predation risk. It is well documented that high-quality social information about risk can come from heterospecific herd mates. Here, we integrate social information with the landscape of fear to quantify how these landscapes are modified by mixed-species herding. To do this, we investigated zebra vigilance in single- and mixed-species herds across different levels of predation risk (lion versus no lion), and assessed how they manage herd size and the competition-information trade-off associated with grouping behaviour. Overall, zebra performed higher vigilance in high-risk areas. However, mixed-species herding reduced vigilance levels. We estimate that zebra in single-species herds would have to feed for approximately 35 min more per day in low-risk areas and approximately 51 min more in high-risk areas to compensate for the cost of higher vigilance. Furthermore, zebra benefitted from the competition-information trade-off by increasing the number of heterospecifics while keeping the number of zebra in a herd constant. Ultimately, we show that mixed-species herding reduces the effects of predation risk, whereby zebra in mixed-species herds, under high predation risk, perform similar levels of vigilance compared with zebra in low-risk scenarios.


Asunto(s)
Miedo , Conducta Predatoria , Animales , Conducta Animal , Equidae , Leones , Vigilia
5.
Sci Rep ; 9(1): 15392, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659224

RESUMEN

The obligate dependency of the common hippopotamus, Hippopotamus amphibius, on water makes them particularly vulnerable to hydrological disturbances. Despite the threats facing this at-risk species, there is a lack of information regarding H. amphibius spatial ecology. We used high-resolution tracking data of male H. amphibius to assess home range size, movement mode (e.g. residency and migratory movements), and resource selection patterns. We compared these results across seasons to understand how hydrological variability influences H. amphibius movement. Our study watershed has been severely impacted by anthropogenic water abstraction causing the river to stop flowing for prolonged periods. We observed H. amphibius movements to be highly constrained to the river course with grassy floodplains being their preferred habitat. Dominant and small sub-adult males displayed year-round residency in/near river pools and had smaller home ranges compared to large sub-adults. During the dry season, large sub-adult males made significant (~15 km) upstream movements. The larger home range size of large sub-adults can be attributed to the elevated levels of migratory and exploratory activities to limit conspecific aggression as the river dries. Our observations provide insight into how future changes in water flow may influence male H. amphibius movements and populations through density-dependent effects.


Asunto(s)
Distribución Animal , Artiodáctilos/fisiología , Especies en Peligro de Extinción , Agua Dulce , Animales , Pradera , Masculino , Estaciones del Año
6.
Proc Natl Acad Sci U S A ; 115(22): E5028-E5037, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760056

RESUMEN

Cross-boundary transfers of nutrients can profoundly shape the ecology of recipient systems. The common hippopotamus, Hippopotamus amphibius, is a significant vector of such subsidies from terrestrial to river ecosystems. We compared river pools with high and low densities of H. amphibius to determine how H. amphibius subsidies shape the chemistry and ecology of aquatic communities. Our study watershed, like many in sub-Saharan Africa, has been severely impacted by anthropogenic water abstraction reducing dry-season flow to zero. We conducted observations for multiple years over wet and dry seasons to identify how hydrological variability influences the impacts of H. amphibius During the wet season, when the river was flowing, we detected no differences in water chemistry and nutrient parameters between pools with high and low densities of H. amphibius Likewise, the diversity and abundance of fish and aquatic insect communities were indistinguishable. During the dry season, however, high-density H. amphibius pools differed drastically in almost all measured attributes of water chemistry and exhibited depressed fish and insect diversity and fish abundance compared with low-density H. amphibius pools. Scaled up to the entire watershed, we estimate that H. amphibius in this hydrologically altered watershed reduces dry-season fish abundance and indices of gamma-level diversity by 41% and 16%, respectively, but appears to promote aquatic invertebrate diversity. Widespread human-driven shifts in hydrology appear to redefine the role of H. amphibius, altering their influence on ecosystem diversity and functioning in a fashion that may be more severe than presently appreciated.


Asunto(s)
Artiodáctilos/fisiología , Ecosistema , Eutrofización/fisiología , Ríos/química , Animales , Peces , Oxígeno/análisis , Oxígeno/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-29581401

RESUMEN

Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership and environmental system impact species' vulnerability by (i) evaluating population change in migratory and non-migratory bird, mammal and fish species using the Living Planet Database (LPD), (ii) analysing the role of collective navigation and environmental system on migrant extinction risk using International Union for Conservation of Nature (IUCN) classifications and (iii) compiling literature on geographical range change of migratory species. Likelihood of population decrease differed by taxonomic group: migratory birds were more likely to experience annual declines than non-migrants, while mammals displayed the opposite pattern. Within migratory species in IUCN, we observed that collective navigation and environmental system were important predictors of extinction risk for fishes and birds, but not for mammals, which had overall higher extinction risk than other taxa. We found high phylogenetic relatedness among collectively navigating species, which could have obscured its importance in determining extinction risk. Overall, outputs from these analyses can help guide strategic interventions to conserve the most vulnerable migrations.This article is part of the theme issue 'Collective movement ecology'.


Asunto(s)
Migración Animal , Aves/fisiología , Ambiente , Peces/fisiología , Mamíferos/fisiología , Navegación Espacial , Animales , Aves/clasificación , Peces/clasificación , Mamíferos/clasificación , Filogenia
9.
PLoS One ; 9(10): e109011, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25271889

RESUMEN

Two key factors that influence the foraging behaviour of group-living herbivores are food availability and individual dominance status. Yet, how the combination of these factors influences the patch-joining decisions of individuals foraging within groups has scarcely been explored. To address this, we focused on the patch-joining decisions of group-living domestic goats (Capra hircus). When individuals were tested against the top four ranked goats of the herd, we found that at patches with low food availability they avoided these dominant patch-holders and only joined subordinates (i.e. costs outweighed benefits). However, as the amount of food increased, the avoidance of the top ranked individuals declined. Specifically, goats shifted and joined the patch of an individual one dominance rank higher than the previous dominant patch holder when the initial quantity of food in the new patch was twice that of the lower ranking individual's patch (i.e. benefits outweighed costs). In contrast, when individuals chose between patches held by dominant goats, other than the top four ranked goats, and subordinate individuals, we found that they equally joined the dominant and subordinate patch-holders. This joining was irrespective of the dominance gap, absolute rank of the dominant patch-holder, sex or food availability (i.e. benefits outweighed costs). Ultimately, our results highlight that herbivores weigh up the costs and benefits of both food availability and patch-holder dominance status when making patch-joining decisions. Furthermore, as the initial quantity of food increases, food availability becomes more important than dominance with regard to influencing patch-joining decisions.


Asunto(s)
Toma de Decisiones , Abastecimiento de Alimentos , Herbivoria , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...