Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4928, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858352

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widely established as ubiquitous in the interstellar medium (ISM), but considering their prevalence in harsh vacuum environments, the role of ionisation in the formation of PAH clusters is poorly understood, particularly if a chirality-dependent aggregation route is considered. Here we report on photoelectron spectroscopy experiments on [4]helicene clusters performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest PAH with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene. The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains.

2.
J Phys Chem Lett ; 14(48): 10794-10802, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38013434

RESUMEN

The interaction of water and polycyclic aromatic hydrocarbons is of fundamental importance in areas as diverse as materials science and atmospheric and interstellar chemistry. The interplay between hydrogen bonding and dipole-π interactions results in subtle dynamics that are challenging to describe from first principles. Here, we employ far-IR action vibrational spectroscopy with the infrared free-electron laser FELIX to investigate naphthalene with one to three water molecules. We observe diffuse bands associated with intermolecular vibrational modes that serve as direct probes of the loose binding of water to the naphthalene surface. These signatures are poorly reproduced by static DFT or Møller-Plesset computations. Instead, a rationalization is achieved through Born-Oppenheimer Molecular Dynamics simulations, revealing the active mobility of water over the surface, even at low temperatures. Therefore, our work provides direct insights into the wetting interactions associated with shallow potential energy surfaces while simultaneously demonstrating a solid experimental-computational framework for their investigation.

3.
J Am Chem Soc ; 145(31): 17201-17210, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494139

RESUMEN

Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H218O, D2O, and HDO isotopologues of the phenanthrene-H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.

4.
Nat Commun ; 14(1): 934, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36807276

RESUMEN

Chiral molecules with low enantiomer interconversion barriers racemize even at cryogenic temperatures due to quantum tunneling, forming a racemic mixture that is impossible to separate using conventional chemical methods. Here we both experimentally and theoretically demonstrate a method to create and probe a state-specific enantiomeric enrichment for such molecular systems. The coherent, non-linear, and resonant approach is based on a microwave six-wave mixing scheme and consists of five phase-controlled microwave pulses. The first three pulses induce a chiral wavepacket in a chosen rotational state, while the consecutive two pulses induce a polarization for a particular rotational transition (listen transition) with a magnitude proportional to the enantiomeric excess created. The experiments are performed with the transiently chiral molecule benzyl alcohol, where a chiral molecular response was successfully obtained. This signal demonstrates that enantiomeric excess can be induced in a quantum racemic mixture of a transiently chiral molecule using the developed microwave six-wave mixing scheme, which is an important step towards controlling non-rigid chiral molecular systems.

5.
Proc Natl Acad Sci U S A ; 120(9): e2214970120, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802430

RESUMEN

Most biomolecular activity takes place in aqueous environments, and it is strongly influenced by the surrounding water molecules. The hydrogen bond networks that these water molecules form are likewise influenced by their interactions with the solutes, and thus, it is crucial to understand this reciprocal process. Glycoaldehyde (Gly), often considered the smallest sugar, represents a good template to explore the steps of solvation and determine how the organic molecule shapes the structure and hydrogen bond network of the solvating water cluster. Here, we report a broadband rotational spectroscopy study on the stepwise hydration of Gly with up to six water molecules. We reveal the preferred hydrogen bond networks formed when water molecules start to form three-dimensional (3D) topologies around an organic molecule. We observe that water self-aggregation prevails even in these early stages of microsolvation. These hydrogen bond networks manifest themselves through the insertion of the small sugar monomer in the pure water cluster in a way in which the oxygen atom framework and hydrogen bond network resemble those of the smallest three-dimensional pure water clusters. Of particular interest is the identification, in both the pentahydrate and hexahydrate, of the previously observed prismatic pure water heptamer motif. Our results show that some specific hydrogen bond networks are preferred and survive the solvation of a small organic molecule, mimicking those of pure water clusters. A many-body decomposition analysis of the interaction energy is also performed to rationalize the strength of a particular hydrogen bond, and it successfully confirms the experimental findings.

6.
J Am Chem Soc ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36762446

RESUMEN

The investigation on the preferred arrangement and intermolecular interactions of gas phase solute-water clusters gives insights into the intermolecular potentials that govern the structure and dynamics of the aqueous solutions. Here, we report the investigation of hydrated coordination networks of benzaldehyde-(water)n (n = 1-6) clusters in a pulsed supersonic expansion using broadband rotational spectroscopy. Benzaldehyde (PhCHO) is the simplest aromatic aldehyde that involves both hydrophilic (CHO) and hydrophobic (phenyl ring) functional groups, which can mimic molecules of biological significance. For the n = 1-3 clusters, the water molecules are connected around the hydrophilic CHO moiety of benzaldehyde through a strong CO···HO hydrogen bond and weak CH···OH hydrogen bond(s). For the larger clusters, the spectra are consistent with the structures in which the water clusters are coordinated on the surface of PhCHO with both the hydrophilic CHO and hydrophobic phenyl ring groups being involved in the bonding interactions. The presence of benzaldehyde does not strongly interfere with the cyclic water tetramer and pentamer, which retain the same structure as in the pure water cluster. The book isomer instead of cage or prism isomers of the water hexamer is incorporated into the microsolvated cluster. The PhCHO molecule deviates from the planar structure upon sequential addition of water molecules. The PhCHO-(H2O)1-6 clusters may serve as a simple model system in understanding the solute-water interactions of biologically relevant molecules in an aqueous environment.

7.
Phys Chem Chem Phys ; 24(38): 23096-23105, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35876592

RESUMEN

We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.

8.
J Phys Chem Lett ; 13(16): 3770-3775, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35446045

RESUMEN

Self-aggregation of sevoflurane, an inhalable, fluorinated anesthetic, provides a challenge for current state-of-the-art high-resolution techniques due to its large mass and the variety of possible hydrogen bonds between monomers. Here we present the observation of sevoflurane trimer by chirped-pulse Fourier transform microwave spectroscopy, identified through the interplay of experimental and computational methods. The trimer (>600 Da), one of the largest molecular aggregates observed through rotational spectroscopy, does not resemble the binding (C-H···O) motif of the already characterized sevoflurane dimer, instead adapting a new binding configuration created predominantly from 17 CH···F hydrogen bonds that resembles a nanomicellar arrangement. The observation of such a heavy aggregate highlights the potential of rotational spectroscopy to study larger biochemical systems in the limit of spectroscopic congestion but also showcases the challenges ahead as the mass of the system increases.


Asunto(s)
Microondas , Dimerización , Enlace de Hidrógeno , Sevoflurano , Análisis Espectral
9.
Phys Chem Chem Phys ; 23(16): 9721-9732, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33870387

RESUMEN

We report on the noncovalent intermolecular interactions established between the polycyclic aromatic hydrocarbons phenanthrene and phenanthridine with water. Such noncovalent interactions involving extended aromatic systems and water molecules are ubiquitous in a variety of chemical and biological systems. Our study provides spectroscopic results on simple model systems to understand the impact that an extended aromatic surface and the presence of a heteroatom have on the nature of the noncovalent interactions established with the solvent. Microhydrated phenanthrene and phenanthridine clusters with up to three water molecules have been observed and unambiguously characterised by means of broadband rotational spectroscopy and quantum chemical calculations. The presence of a nitrogen atom in the backbone of phenanthridine remarkably affects the geometries of the water clusters and the interaction networks at play, with O-HN and C-HO interactions becoming preferred in the phenanthridine-water clusters over the O-Hπ interactions seen in the phenanthrene-water clusters. The presence of this heteroatom induces nuclear quadrupole coupling, which was used to understand the cooperativity effects found with increasing cluster size. Our results provide important insight to draw a more complete picture of the noncovalent interactions involving solvent molecules and aromatic systems larger than benzene, and they can be significant to enhance our understanding of the aromatic-polar interactions at play in a myriad of chemical and biological contexts.

10.
J Phys Chem Lett ; 11(21): 8997-9002, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33035060

RESUMEN

Gas-phase IR-UV double-resonance laser spectroscopy is an IR absorption technique that bridges the gap between experimental IR spectroscopy and theory. The IR experiments are used to directly evaluate predicted frequencies and potential energy surfaces as well as to probe the structure of isolated molecules. However, a detailed understanding of the underlying mechanisms is, especially in the far-IR regime, still far from complete, even though this is crucial for properly interpreting the recorded IR absorption spectra. Here, events occurring upon excitation to vibrational levels of polycyclic aromatic hydrocarbons by far-IR radiation from the FELIX free electron laser are followed using resonance-enhanced multiphoton ionization spectroscopy. These studies provide detailed insight into how ladder climbing and anharmonicity influence IR-UV spectroscopy and therefore the resulting IR signatures in the far-IR region. Moreover, the potential energy surfaces of these low-frequency delocalized modes are investigated and shown to have a strong harmonic character.

11.
Phys Chem Chem Phys ; 22(30): 17042-17051, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32542247

RESUMEN

Isoleucinol, a potential precursor to the essential α-amino acid isoleucine, has been studied using microwave spectroscopy from 2-26 GHz. The measurements between 18-26 GHz were performed with a newly developed segmented chirped-pulse Fourier transform microwave spectrometer, which has reduced the cost of the instrument by half compared to a single pulse excitation and direct detection chirped-pulse microwave spectrometer in the same frequency range. The performance of the instrument has been demonstrated and found to be comparable to the previous design. For isoleucinol, the flexibility of the sec-butyl side chain (R = -CH(CH3)CH2CH3) can result in more than 200 different conformers from its five dihedral angles, and experimentally, seven conformers have been assigned. A fit including the hyperfine splitting due to nitrogen nuclear quadrupole coupling for the rotational transitions is reported for all conformers, along with the experimental structures of the three lowest energy conformers. The observed conformers have intramolecular NH-O hydrogen bond interactions, similar to the second energetically favorable conformer of the analogous amino acid, isoleucine. A complete linelist has been provided to facilitate a search for isoleucinol in the interstellar medium.

12.
Angew Chem Int Ed Engl ; 59(22): 8401-8405, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32096889

RESUMEN

Carbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules. Glycoaldehyde (Gly) represents a prototypical system to identify the relevant interactions and the balance that governs them. Here we present a broadband rotational-spectroscopy study on the stepwise hydration of the Gly dimer with up to three water molecules. We reveal the preferred hydrogen-bond networks formed when water molecules sequentially bond to the sugar dimer. We observe that the dimer structure and the hydrogen-bond networks at play remarkably change upon the addition of just a single water molecule to the dimer. Further addition of water molecules does not significantly alter the observed hydrogen-bond topologies.

13.
J Phys Chem A ; 123(14): 3194-3198, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30883121

RESUMEN

Many achiral molecules can be made chiral by appropriate positioning of an isotope. Accurate detection of this type of chirality has remained elusive, and there is as yet no general method for detection of isotopically chiral species. Here, we present the first application of microwave three-wave mixing to isotopically chiral molecules, detecting enantiomeric excess in ( R/ S)-benzyl-α-D1 alcohol. Our method is expected to be applicable to a broad range of isotopically chiral molecules with a prochiral parent species.

14.
Phys Chem Chem Phys ; 21(6): 3016-3023, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30672522

RESUMEN

A high-resolution molecular spectroscopy study was carried out on the cyclic ether tetrahydropyran (THP), one of the smallest molecules composed of a pyranose ring. As this ring structure is closely related to carbohydrates, THP can offer relevant insight into structural variations of this unit. Thus, an extensive probe of THP using three broadband instruments ranging from the microwave to the far-infrared (2-8 GHz, 75-110 GHz and 100-650 cm-1 frequency ranges) was performed to accrue both accurate sets of rotational constants and structural information. This array of experimental setups provided an accurate set of data to improve the description of the ground state of THP and revise the principal parameters of its backbone structure. The structural information was deduced from the assignment of the 13C and 18O isotopologues present in natural abundance. In addition, the complementary dataset obtained from these experiments led to a better characterization of the vibrational motions involving the skeletal ring of the molecule. In particular, the vibrational frequencies of four of these modes (ν23 (∼250 cm-1), ν22 (∼403 cm-1), ν21 (∼430 cm-1), and ν20 (∼562 cm-1)) have been determined from the analysis of the first rotationally resolved vibrational spectrum reported for THP. Quantum-chemical calculations aided in the analysis of the experimental results.

15.
Angew Chem Int Ed Engl ; 58(10): 3108-3113, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30672652

RESUMEN

The aggregation of aromatic species is dictated by inter- and intramolecular forces. Not only is characterizing these forces in aromatic growth important for understanding grain formation in the interstellar medium, but it is also imperative to comprehend biological functions. We report a combined rotational spectroscopic and quantum-chemical study on three homo-dimers, comprising of diphenyl ether, dibenzofuran, and fluorene, to analyze the influence of structural flexibility and the presence of heteroatoms on dimer formation. The structural information obtained shows clear similarities between the dimers, despite their qualitatively different molecular interactions. All dimers are dominated by dispersion interactions, but the dibenzofuran dimer is also influenced by repulsion between the free electron pairs of the oxygen atoms and the π-clouds. This study lays the groundwork for understanding the first steps of molecular aggregation in systems with aromatic residues.

16.
Phys Chem Chem Phys ; 21(7): 3414-3422, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30378601

RESUMEN

In this work we report on the experimental and theoretical investigations of the progressional complexation of the polycyclic aromatic hydrocarbon (PAH) acenaphthene with itself and with water. In the interstellar medium, PAH complexes are an important link between molecular gas and solid state configurations of carbon, and in the form of grains they are postulated to serve as chemical catalysts. However, no direct detection of PAHs or their (microhydrated) complexes in interstellar space has been achieved as of yet. Therefore, we provide UV and far-infrared ion dip spectra of homogeneous PAH multimers and their hydrated clusters. The far-IR region of the IR spectrum is especially interesting since it contains the most spectral features that arise due to complexation or microhydration. We present microhydrated PAH complexes up to the third order, where we show that the water clusters are locked with little perturbation on the different PAH platforms. Density functional theory (DFT) calculations involving hydrogen bond interactions still seem challenging for predicting the far-IR frequency range, although applying anharmonic corrections leads to slight improvements.

17.
J Phys Chem Lett ; 9(16): 4539-4543, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30047269

RESUMEN

An interesting class of molecules is that in which the molecules do not possess a stereogenic center but can become chiral because of their spatial arrangement. These molecules can be seen as chiral conformers, whose two nonsuperimposable forms can interconvert from one to another by rotations about single bonds. Here, we show that an initially racemic mixture of chiral conformers, such as a sample of cyclohexylmethanol, C7H14O, can be enantiomerically enriched by performing the enantioselective process of coherent population transfer between rotational levels. By first performing a population transfer cycle, followed by a three-wave mixing experiment, we show that an enantiomeric excess in a rotational level of choice can be achieved. This represents the first experimental demonstration of such an effect in a chiral pair of conformers, and it showcases the broad applicability of three-wave mixing not only for analytical applications but also to a wide scope of experiments of fundamental interest.

18.
Phys Chem Chem Phys ; 20(8): 5545-5552, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29204595

RESUMEN

Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H218O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

19.
J Phys Chem Lett ; 8(23): 5744-5750, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112436

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are key players in reaction chemistry. While it is postulated that they serve as a basis for ice grains, there has been no direct detection of PAHs in astronomical environments. We aim to investigate the hydration of PAHs to set a foundation for the future exploration of potential ice formation pathways. We report results from chirped pulse Fourier transform microwave spectroscopy and quantum-chemical calculations for the PAH acenaphthene and acenaphthene complexed with up to four water molecules. The acenaphthene-(H2O)3 complex is of particular interest as the elusive cyclic water trimer was observed. It appears in a slightly distorted configuration when compared with the pure water trimer. This is explained by hydrogen-bond net cooperativity effects. Binding energies for the complexes are presented. Our results provide insight into the onset of complex aggregation that could be occurring in extraterrestrial environments as part of ice grain formation.

20.
Angew Chem Int Ed Engl ; 56(41): 12512-12517, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28672055

RESUMEN

We report the experimental demonstration of coherent enantiomer-selective enrichment of chiral molecules by employing a novel microwave five-pulse scheme. Our results show that enantiomers can be selectively transferred to a rotational level of choice by applying sequences of resonant microwave pulses in a phase- and polarization-controlled manner. This is achieved by simultaneously exciting all three kinds of electric dipole-allowed rotational transitions and monitoring the effect on a fourth rotational transition of choice. Using molecular beams, we apply our method to two chiral terpenes and obtain a 6 % enantiomeric enrichment, which is one order of magnitude larger than that recently reported in a buffer-gas cell experiment. This approach establishes a robust scheme for controlled manipulation of enantiomers using tailored microwave fields and opens up new avenues for chiral purification and enrichment that can be used in a broad scope of analytical or spectroscopic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...