Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(9): 1812-1820, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328995

RESUMEN

A library of hybrid molecules is developed based on the common chemical features shared by clemastine and tamoxifen both of which are well known for their antileishmanial activities. In the initial screening against Leishmania major and L. amazonensis promastigotes, as well as cytotoxicity assays using HepG2 cells, several hybrids showed submicromolar activity against the parasite and no toxicity against human cells. The compounds with an EC50 < 2 µM against promastigotes of both species and a selectivity index >10 were further characterized against intracellular amastigotes as well as promastigotes of species that cause both visceral and cutaneous leishmaniasis, such as L. infantum and L. braziliensis, respectively. These sequential screenings revealed the high pan-activity of this class of molecules against these species, with several compounds displaying an EC50 ≤ 2 µM against both promastigotes and intracellular amastigotes. Two of them were identified as the potential templates for lead optimization of this series having shown the highest activities against all species in both stages of parasite. The present findings can serve as a good starting point in the search for novel antileishmanial compounds that are easy to access and highly active.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Humanos , Animales , Ratones , Clemastina/uso terapéutico , Macrófagos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Antiprotozoarios/farmacología , Células Hep G2 , Ratones Endogámicos BALB C
2.
J Biomol Screen ; 20(1): 56-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25121554

RESUMEN

High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery.


Asunto(s)
Descubrimiento de Drogas , Enfermedades Desatendidas/tratamiento farmacológico , Medicina Tropical , Levaduras , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos
3.
Parasitology ; 141(1): 8-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23611102

RESUMEN

Many Neglected Tropical Diseases (NTDs) have recently been subject of increased focus, particularly with relation to high-throughput screening (HTS) initiatives. These vital endeavours largely rely of two approaches, in vitro target-directed screening using biochemical assays or cell-based screening which takes no account of the target or targets being hit. Despite their successes both of these approaches have limitations; for example, the production of soluble protein and a lack of cellular context or the problems and expense of parasite cell culture. In addition, both can be challenging to miniaturize for ultra (u)HTS and expensive to utilize. Yeast-based systems offer a cost-effective approach to study and screen protein targets in a direct-directed manner within a eukaryotic cellular context. In this review, we examine the utility and limitations of yeast cell-based, target-directed screening. In particular we focus on the currently under-explored possibility of using such formats in uHTS screening campaigns for NTDs.


Asunto(s)
Bioensayo/estadística & datos numéricos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Saccharomyces cerevisiae/genética , Bioensayo/economía , Enfermedades Transmisibles/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Drogas en Investigación/farmacología , Expresión Génica , Ingeniería Genética , Ensayos Analíticos de Alto Rendimiento/economía , Humanos , Enfermedades Desatendidas/tratamiento farmacológico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Medicina Tropical
4.
Plant Mol Biol ; 73(4-5): 399-407, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20309609

RESUMEN

Sphingolipids are key components of eukaryotic plasma membranes that are involved in many functions, including the formation signal transduction complexes. In addition, these lipid species and their catabolites function as secondary signalling molecules in, amongst other processes, apoptosis. The biosynthetic pathway for the formation of sphingolipid is largely conserved. However, unlike mammalian cells, fungi, protozoa and plants synthesize inositol phosphorylceramide (IPC) as their primary phosphosphingolipid. This key step involves the transfer of the phosphorylinositol group from phosphatidylinositol (PI) to phytoceramide, a process catalysed by IPC synthase in plants and fungi. This enzyme activity is at least partly encoded by the AUR1 gene in the fungi, and recently the distantly related functional orthologue of this gene has been identified in the model plant Arabidopsis. Here we functionally analysed all three predicted Arabidopsis IPC synthases, confirming them as aureobasidin A resistant AUR1p orthologues. Expression profiling revealed that the genes encoding these orthologues are differentially expressed in various tissue types isolated from Arabidopsis.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hexosiltransferasas/genética , Arabidopsis/efectos de los fármacos , Depsipéptidos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Etiquetas de Secuencia Expresada , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Hexosiltransferasas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA