Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 71(11): 2237-2250, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265014

RESUMEN

Exercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106). Insulin-stimulated glucose uptake was potentiated and occurred substantially faster in the prior contracted muscles. In this otherwise homogenous group of individuals, a remarkable biological diversity in the glucometabolic responses to insulin is apparent both in skeletal muscle and at the whole-body level. In contrast to the prevailing concept, our analyses reveal that insulin-stimulated muscle glucose uptake and the potentiation thereof by exercise are not associated with muscle glycogen synthase activity, muscle glycogen content, or degree of glycogen utilization during the preceding exercise bout. Our data further suggest that the phenomenon of improved insulin sensitivity in prior contracted muscle is not regulated in a homeostatic feedback manner from glycogen. Instead, we put forward the idea that this phenomenon is regulated by cellular allostatic mechanisms that elevate the muscle glycogen storage set point and enhance insulin sensitivity to promote the uptake of glucose toward faster glycogen resynthesis without development of glucose overload/toxicity or feedback inhibition.


Asunto(s)
Resistencia a la Insulina , Insulina , Humanos , Masculino , Insulina/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Resistencia a la Insulina/fisiología , Insulina Isófana Humana , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Insulina Regular Humana
2.
Diabetes ; 71(5): 906-920, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192682

RESUMEN

Insulin-stimulated muscle glucose uptake is a key process in glycemic control. This process depends on the redistribution of glucose transporters to the surface membrane, a process that involves regulatory proteins such as TBC1D1 and TBC1D4. Accordingly, a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes, and observations from carriers of a TBC1D1 variant associate this protein to a severe obesity phenotype. Here, we identified interactors of the endogenous TBC1D4 protein in human skeletal muscle by an unbiased proteomics approach. We detected 76 proteins as candidate TBC1D4 interactors. The binding of 12 of these interactors was regulated by insulin, including proteins known to be involved in glucose metabolism (e.g., 14-3-3 proteins and α-actinin-4 [ACTN4]). TBC1D1 also coprecipitated with TBC1D4 and vice versa in both human and mouse skeletal muscle. This interaction was not regulated by insulin or exercise in young, healthy, lean individuals. Similarly, the exercise- and insulin-regulated phosphorylation of the TBC1D1-TBC1D4 complex was intact. In contrast, we observed an altered interaction as well as compromised insulin-stimulated phosphoregulation of the TBC1D1-TBC1D4 complex in muscle of obese individuals with type 2 diabetes. Altogether, we provide a repository of TBC1D4 interactors in human and mouse skeletal muscle that serve as potential regulators of TBC1D4 function and, thus, insulin-stimulated glucose uptake in human skeletal muscle.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Animales , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Insulina Regular Humana , Iluminación , Ratones , Músculo Esquelético/metabolismo , Fosforilación
3.
J Physiol ; 598(24): 5687-5699, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32916040

RESUMEN

KEY POINTS: Rodent studies suggest muscle fibre type-specific insulin response in the recovery from exercise.  The current study investigates muscle fibre type-specific insulin action in the recovery from exercise in healthy subjects.  In type I and type II muscle fibres, key proteins in glucose metabolism are similarly regulated by insulin during recovery from exercise.  Our findings imply that both type I and type II muscle fibres contribute to the phenomenon of increased insulin sensitivity in the recovery from a single bout of exercise in humans. ABSTRACT: Human skeletal muscle consists of slow-twitch (type I) and fast-twitch (type II) muscle fibres. Muscle insulin action, regulating glucose uptake and metabolism, is improved following a single exercise bout. Rodent studies suggest that this phenomenon is confined to specific muscle fibre types. Whether this phenomenon is also confined to specific fibre types in humans has not been described. To investigate this, nine healthy men underwent a euglycaemic hyperinsulinaemic clamp (EHC) in the recovery from a single bout of one-legged knee-extensor exercise. Pools of type I and type II fibres were prepared from muscle biopsies taken in the rested and prior exercised leg before and after the EHC. AMPK γ3 and TBC1D4 - two key proteins regulating muscle insulin action following exercise - were higher expressed in type II than type I fibres. However, phosphor-regulation of TBC1D4 was similar between fibre types when related to the total amount of TBC1D4 protein. The activating dephosphorylation of glycogen synthase was also similar in the two fibre types. Thus, insulin-induced regulation of key proteins important for transport and intracellular flux of glucose towards glycogen storage in the recovery from exercise, does not differ between fibre types. In conclusion, the insulin-sensitizing effect of a single bout of exercise includes both type I and type II fibres in human skeletal muscle. This may be an important observation for future pharmacological strategies targeting muscle insulin sensitivity in humans.


Asunto(s)
Ejercicio Físico , Insulina , Glucógeno , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético
5.
Mol Metab ; 39: 100998, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32305516

RESUMEN

OBJECTIVE: Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown. METHODS: Healthy young males underwent an insulin-sensitizing one-legged kicking exercise bout for 1 h followed by fatigue bouts to exhaustion. Muscle biopsies were obtained 4 h post-exercise before and after a 2-hour hyperinsulinemic-euglycemic clamp. RESULTS: A detailed microscopy-based analysis of GLUT4 distribution within seven different myocellular compartments revealed that prior exercise increased GLUT4 localization in insulin-responsive storage vesicles and T-tubuli. Furthermore, insulin-stimulated GLUT4 localization was augmented at the sarcolemma and in the endosomal compartments. CONCLUSIONS: An intracellular redistribution of GLUT4 post-exercise is proposed as a molecular mechanism contributing to the insulin-sensitizing effect of prior exercise in human skeletal muscle.


Asunto(s)
Endosomas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Adulto , Biopsia , Ejercicio Físico , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Microscopía Fluorescente , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Adulto Joven
6.
Diabetes ; 69(4): 578-590, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31974138

RESUMEN

A single bout of exercise enhances insulin action in the exercised muscle. However, not all human studies find that this translates into increased whole-body insulin action, suggesting that insulin action in rested muscle or other organs may be decreased by exercise. To investigate this, eight healthy men underwent a euglycemic-hyperinsulinemic clamp on 2 separate days: one day with prior one-legged knee-extensor exercise to local exhaustion (∼2.5 h) and another day without exercise. Whole-body glucose disposal was ∼18% lower on the exercise day as compared with the resting day due to decreased (∼37%) insulin-stimulated glucose uptake in the nonexercised muscle. Insulin signaling at the level of Akt2 was impaired in the nonexercised muscle on the exercise day, suggesting that decreased insulin action in nonexercised muscle may reduce GLUT4 translocation in response to insulin. Thus, the effect of a single bout of exercise on whole-body insulin action depends on the balance between local effects increasing and systemic effects decreasing insulin action. Physiologically, this mechanism may serve to direct glucose into the muscles in need of glycogen replenishment. For insulin-treated patients, this complex relationship may explain the difficulties in predicting the adequate insulin dose for maintaining glucose homeostasis following physical activity.


Asunto(s)
Glucemia/metabolismo , Ejercicio Físico/fisiología , Insulina/farmacología , Fatiga Muscular/fisiología , Músculo Esquelético/metabolismo , Adulto , Técnica de Clampeo de la Glucosa , Glucógeno Sintasa/metabolismo , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo
7.
J Physiol ; 597(1): 89-103, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30325018

RESUMEN

KEY POINTS: A single bout of exercise is capable of increasing insulin sensitivity in human skeletal muscle. Whether this ability is affected by training status is not clear. Studies in mice suggest that the AMPK-TBC1D4 signalling axis is important for the increased insulin-stimulated glucose uptake after a single bout of exercise. The present study is the first longitudinal intervention study to show that, although exercise training increases insulin-stimulated glucose uptake in skeletal muscle at rest, it diminishes the ability of a single bout of exercise to enhance muscle insulin-stimulated glucose uptake. The present study provides novel data indicating that AMPK in human skeletal muscle is important for the insulin-sensitizing effect of a single bout of exercise. ABSTRACT: Not only chronic exercise training, but also a single bout of exercise, increases insulin-stimulated glucose uptake in skeletal muscle. However, it is not well described how adaptations to exercise training affect the ability of a single bout of exercise to increase insulin sensitivity. Rodent studies suggest that the insulin-sensitizing effect of a single bout of exercise is AMPK-dependent (presumably via the α2 ß2 γ3 AMPK complex). Whether this is also the case in humans is unknown. Previous studies have shown that exercise training decreases the expression of the α2 ß2 γ3 AMPK complex and diminishes the activation of this complex during exercise. Thus, we hypothesized that exercise training diminishes the ability of a single bout of exercise to enhance muscle insulin sensitivity. We investigated nine healthy male subjects who performed one-legged knee-extensor exercise at the same relative intensity before and after 12 weeks of exercise training. Training increased V̇O2peak and expression of mitochondrial proteins in muscle, whereas the expression of AMPKγ3 was decreased. Training also increased whole body and muscle insulin sensitivity. Interestingly, insulin-stimulated glucose uptake in the acutely exercised leg was not enhanced further by training. Thus, the increase in insulin-stimulated glucose uptake following a single bout of one-legged exercise was lower in the trained vs. untrained state. This was associated with reduced signalling via confirmed α2 ß2 γ3 AMPK downstream targets (ACC and TBC1D4). These results suggest that the insulin-sensitizing effect of a single bout of exercise is also AMPK-dependent in human skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Músculo Esquelético/fisiología , Subunidades de Proteína/metabolismo , Adulto , Ciclismo/fisiología , Glucemia , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...