Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; : e2965, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629596

RESUMEN

Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.

2.
Glob Chang Biol ; 30(4): e17286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660810

RESUMEN

Anthropogenic habitat alteration and climate change are two well-known contributors to biodiversity loss through changes to species distribution and abundance; yet, disentangling the effects of these two factors is often hindered by their inherent confound across both space and time. We leveraged a contrast in habitat alteration associated with the jurisdictional boundary between two Canadian provinces to evaluate the relative effects of spatial variation in habitat alteration and climate on white-tailed deer (Odocoileus virginianus) densities. White-tailed deer are an invading ungulate across much of North America, whose expansion into Canada's boreal forest is implicated in the decline of boreal caribou (Rangifer tarandus caribou), a species listed as Threatened in Canada. We estimated white-tailed deer densities using 300 remote cameras across 12 replicated 50 km2 landscapes over 5 years. White-tailed deer densities were significantly lower in areas where winter severity was higher. For example, predicted deer densities declined from 1.83 to 0.35 deer/km2 when winter severity increased from the lowest value to the median value. There was a tendency for densities to increase with increasing habitat alteration; however, the magnitude of this effect was approximately half that of climate. Our findings suggest that climate is the primary driver of white-tailed deer populations; however, understanding the mechanisms underpinning this relationship requires further study of over-winter survival and fecundity. Long-term monitoring at the invasion front is needed to evaluate the drivers of abundance over time, particularly given the unpredictability of climate change and increasing prevalence of extreme weather events.


Asunto(s)
Cambio Climático , Ciervos , Ecosistema , Animales , Ciervos/fisiología , Densidad de Población , Estaciones del Año , Canadá , Especies Introducidas
3.
Conserv Genet ; 24(6): 855-867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969360

RESUMEN

Conservation breeding programs are increasingly used as recovery actions for wild animals; bringing founders into captivity to rear captive populations for future reintroduction into the wild. The International Union for the Conservation of Nature recommends that founders should come from genetically close populations and should have sufficient genetic diversity to avoid mating among relatives. Genomic data are highly informative for evaluating founders due to their high resolution and ability to capture adaptive divergence, yet, their application in that context remains limited. Woodland caribou are federally listed as a Species at Risk in Canada, with several populations facing extirpation, such as those in the Rocky Mountains of Alberta and British Columbia (BC). To prevent local extirpation, Jasper National Park (JNP) is proposing a conservation breeding program. We examined single nucleotide polymorphisms for 144 caribou from 11 populations encompassing a 200,0002 km area surrounding JNP to provide information useful for identifying appropriate founders for this program. We found that this area likely hosts a caribou metapopulation historically characterized by high levels of gene flow, which indicates that multiple sources of founders would be appropriate for initiating a breeding program. However, population structure and adaptive divergence analyses indicate that JNP caribou are closest to populations in the BC Columbia range, which also have suitable genetic diversity for conservation breeding. We suggest that collaboration among jurisdictions would be beneficial to implement the program to promote recovery of JNP caribou and possibly other caribou populations in the surrounding area, which is strategically at the periphery of the distribution of this endangered species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-023-01540-3.

5.
Mov Ecol ; 10(1): 12, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272704

RESUMEN

BACKGROUND: Several migratory ungulates, including caribou, are dramatically declining. Caribou of the Barren-ground ecotype, which forms its own subspecies, are known to be mainly migratory. By contrast, within the Woodland subspecies, animals of the Boreal ecotype are known to be mainly sedentary, while those within the Northern and Central Mountain ecotypes to be partially migratory, with only some individuals migrating. Promotion of conservation actions (e.g., habitat protection) that are specific to both residents and migrants, as well as to the areas they frequent seasonally (which may be separate for migrants), requires distinguishing migration from other movement behaviours, which might be a challenge. METHODS: We aimed at assessing seasonal movement behaviours, including migratory, resident, dispersing, and nomadic, for caribou belonging to the Barren-ground and Woodland subspecies and ecotypes. We examined seasonal displacement, both planar and altitudinal, and seasonal ranges overlap for 366 individuals that were GPS-collared in Northern and Western Canada. Lastly, we assessed the ability of caribou individuals to switch between migratory and non-migratory movement behaviours between years. RESULTS: We detected migratory behaviour within each of the studied subspecies and ecotypes. However, seasonal ranges overlap (an index of sedentary behaviour) varied, with proportions of clear migrants (0 overlap) of 40.94% for Barren-ground caribou and 23.34% for Woodland caribou, and of 32.95%, 54.87%, and 8.86% for its Northern Mountain, Central Mountain, and Boreal ecotype, respectively. Plastic switches of individuals were also detected between migratory, resident, dispersing, and nomadic seasonal movements performed across years. CONCLUSIONS: Our unexpected findings of marked seasonal movement plasticity in caribou indicate that this phenomenon should be better studied to understand the resilience of this endangered species to habitat and climatic changes. Our results that a substantial proportion of individuals engaged in seasonal migration in all studied ecotypes indicate that caribou conservation plans should account for critical habitat in both summer and winter ranges. Accordingly, conservation strategies are being devised for the Woodland subspecies and its ecotypes, which were found to be at least partially migratory in this study. Our findings that migration is detectable with both planar and altitudinal analyses of seasonal displacement provide a tool to better define seasonal ranges, also in mountainous and hilly environments, and protect habitat there.

6.
Conserv Biol ; 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35146809

RESUMEN

Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.

7.
PLoS Genet ; 18(2): e1009974, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143486

RESUMEN

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.


Asunto(s)
Migración Animal/fisiología , Genoma/genética , Reno/genética , Animales , Conducta Animal/fisiología , Evolución Biológica , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Ecosistema , Especies en Peligro de Extinción/estadística & datos numéricos , Femenino , Genómica/métodos , Haplotipos , América del Norte , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos
8.
Ecol Evol ; 10(20): 11631-11642, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144989

RESUMEN

Accurately estimating abundance is a critical component of monitoring and recovery of rare and elusive species. Spatial capture-recapture (SCR) models are an increasingly popular method for robust estimation of ecological parameters. We provide an analytical framework to assess results from empirical studies to inform SCR sampling design, using both simulated and empirical data from noninvasive genetic sampling of seven boreal caribou populations (Rangifer tarandus caribou), which varied in range size and estimated population density. We use simulated population data with varying levels of clustered distributions to quantify the impact of nonindependence of detections on density estimates, and empirical datasets to explore the influence of varied sampling intensity on the relative bias and precision of density estimates. Simulations revealed that clustered distributions of detections did not significantly impact relative bias or precision of density estimates. The genotyping success rate of our empirical dataset (n = 7,210 samples) was 95.1%, and 1,755 unique individuals were identified. Analysis of the empirical data indicated that reduced sampling intensity had a greater impact on density estimates in smaller ranges. The number of captures and spatial recaptures was strongly correlated with precision, but not absolute relative bias. The best sampling designs did not differ with estimated population density but differed between large and small ranges. We provide an efficient framework implemented in R to estimate the detection parameters required when designing SCR studies. The framework can be used when designing a monitoring program to minimize effort and cost while maximizing effectiveness, which is critical for informing wildlife management and conservation.

9.
Wildl Soc Bull ; 43(1): 167-177, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31007303

RESUMEN

Woodland caribou (Rangifer tarandus caribou) are threatened in Canada, with population and distribution declines evident in most regions of the country. Causes of declines are linked to landscape change from forest fires and human development, notably forestry oil and gas activities, which result in caribou habitat loss and affect ecosystem food webs. The Federal Species at Risk Act requires effective protection and restoration of caribou habitat, with actions to increase caribou survival. These requirements call for effective monitoring of caribou population trends to gauge success. Many woodland caribou populations are nearly impossible to count using traditional aerial survey methods, but demographic-based monitoring approaches can be used to estimate population trends based on population modeling of vital rates from marked animals. Monitoring programs have used a well-known simple population model (the Recruitment-Mortality [R/M] equation) to estimate demographic rates for woodland caribou, but have faced challenges in managing large data streams and providing transparency in the demographic estimation process. We present a stand-alone statistical software application using open-source software to permit efficient, transparent, and replicable demographic estimation for woodland caribou populations. We developed an easy-to-use, interactive web-based application for the R/M population model that uses a Bayesian estimation approach and provides the user flexibility in choice of prior distributions and other output features. We illustrate the web-application to the A la Pêche Southern Mountain (Central Group) woodland caribou population in west-central Alberta, Canada, during 1998-2017. Our estimates of population demographics are consistent with previous research on this population and highlight the utility of the application in assessing caribou population responses to species recovery actions. We provide example data, computer code, the web-based application package, and a user manual to guide installation and use. We also review underlying assumptions and challenges of population monitoring in this case study. We expect our software will contribute to efficient monitoring of woodland caribou and help in the assessment of recovery actions for this species. © 2019 The Authors. Wildlife Society Bulletin Published by Wiley Periodicals, Inc.

10.
Proc Natl Acad Sci U S A ; 116(13): 6181-6186, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858314

RESUMEN

Adaptive management is a powerful means of learning about complex ecosystems, but is rarely used for recovering endangered species. Here, we demonstrate how it can benefit woodland caribou, which became the first large mammal extirpated from the contiguous United States in recent history. The continental scale of forest alteration and extended time needed for forest recovery means that relying only on habitat protection and restoration will likely fail. Therefore, population management is also needed as an emergency measure to avoid further extirpation. Reductions of predators and overabundant prey, translocations, and creating safe havens have been applied in a design covering >90,000 km2 Combinations of treatments that increased multiple vital rates produced the highest population growth. Moreover, the degree of ecosystem alteration did not influence this pattern. By coordinating recovery involving scientists, governments, and First Nations, treatments were applied across vast scales to benefit this iconic species.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Reno , Animales , Ecosistema , Cadena Alimentaria , Estados Unidos
11.
Mol Ecol ; 28(8): 1946-1963, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714247

RESUMEN

Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.


Asunto(s)
Conducta Animal , Genética de Población , Reno/genética , Selección Genética/genética , Alelos , Migración Animal , Animales , Flujo Genético , Marcadores Genéticos/genética , Variación Genética/genética , Haplotipos/genética , Humanos , Fenotipo , Polimorfismo Genético , Reno/fisiología , Estaciones del Año
12.
Ecol Appl ; 29(3): e01852, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653797

RESUMEN

A fundamental challenge in habitat ecology and management is understanding the mechanisms generating animal distributions. Studies of habitat selection provide a lens into such mechanisms, but are often limited by unrealistic assumptions. For example, most studies assume that habitat selection is constant with respect to the availability of resources, such that habitat use remains proportional to availability. To the contrary, a growing body of work has shown the fallacy of this assumption, indicating that animals modify their behavior depending on the context at broader scales. This has been termed a functional response in habitat selection. Furthermore, a diversity of methods is employed to model functional responses in habitat selection, with little attention to how methodology might affect scientific and conservation conclusions. Here, we first review the conceptual and statistical foundations of methods currently used to model functional responses and clarify the ecological tests evaluated within each approach. We then use a combination of simulated and empirical data sets to evaluate the similarities and differences among approaches. Importantly, we identified multiple statistical issues with the most widely applied approaches to understand functional responses, including: (1) a complex and important role of random- or individual-level intercepts in adjusting individual-level regression coefficients as resource availability changes and (2) a sensitivity of results to poorly informed individual-level coefficients estimated for animals with low availability of a given resource. Consequently, we provide guidance on applying approaches that are insensitive to these issues with the goal of advancing our understanding of animal habitat ecology and management. Finally, we characterize the management implications of assuming similarity between the current approaches to model functional responses with two empirical data sets of federally threatened species: Canada lynx (Lynx canadensis) in the United States and woodland caribou (Rangifer tarandus caribou) in Canada. Collectively, our assessment helps clarify the similarities and differences among current approaches and, therefore, assists the integration of functional responses into the mainstream of habitat ecology and management.


Asunto(s)
Ecosistema , Reno , Distribución Animal , Animales , Canadá , Ecología
13.
Ecol Lett ; 21(9): 1401-1412, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30019409

RESUMEN

The composition of local mammalian carnivore communities has far-reaching effects on terrestrial ecosystems worldwide. To better understand how carnivore communities are structured, we analysed camera trap data for 108 087 trap days across 12 countries spanning five continents. We estimate local probabilities of co-occurrence among 768 species pairs from the order Carnivora and evaluate how shared ecological traits correlate with probabilities of co-occurrence. Within individual study areas, species pairs co-occurred more frequently than expected at random. Co-occurrence probabilities were greatest for species pairs that shared ecological traits including similar body size, temporal activity pattern and diet. However, co-occurrence decreased as compared to other species pairs when the pair included a large-bodied carnivore. Our results suggest that a combination of shared traits and top-down regulation by large carnivores shape local carnivore communities globally.


Asunto(s)
Carnívoros , Ecología , Ecosistema , Animales , Simpatría
14.
PLoS One ; 13(2): e0191730, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29389939

RESUMEN

Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised recreation in areas occupied by grizzly bears.


Asunto(s)
Recreación , Ursidae , Alberta , Animales , Humanos , Modelos Teóricos
15.
Ecology ; 99(1): 172-183, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29065232

RESUMEN

Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship.


Asunto(s)
Ecología , Ecosistema , Animales
16.
PLoS One ; 11(2): e0150065, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26910226

RESUMEN

Interest in bison (Bison bison, B. bonasus) conservation and restoration continues to grow globally. In Canada, plains bison (B. b. bison) are threatened, occupying less than 0.5% of their former range. The largest threat to their recovery is the lack of habitat in which they are considered compatible with current land uses. Fences and direct management make range expansion by most bison impossible. Reintroduction of bison into previously occupied areas that remain suitable, therefore, is critical for bison recovery in North America. Banff National Park is recognized as historical range of plains bison and has been identified as a potential site for reintroduction of a wild population. To evaluate habitat quality and assess if there is sufficient habitat for a breeding population, we developed a Habitat Suitability Index (HSI) model for the proposed reintroduction and surrounding areas in Banff National Park (Banff). We then synthesize previous studies on habitat relationships, forage availability, bison energetics and snowfall scenarios to estimate nutritional carrying capacity. Considering constraints on nutritional carrying capacity, the most realistic scenario that we evaluated resulted in an estimated maximum bison density of 0.48 bison/km2. This corresponds to sufficient habitat to support at least 600 to 1000 plains bison, which could be one of the largest 10 plains bison populations in North America. Within Banff, there is spatial variation in predicted bison habitat suitability and population size that suggests one potential reintroduction site as the most likely to be successful from a habitat perspective. The successful reintroduction of bison into Banff would represent a significant global step towards conserving this iconic species, and our approach provides a useful template for evaluating potential habitat for other endangered species reintroductions into their former range.


Asunto(s)
Bison/fisiología , Ecosistema , Especies en Peligro de Extinción , Alberta , Animales , Femenino , Masculino , Densidad de Población
17.
Environ Entomol ; 41(3): 578-86, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22732616

RESUMEN

Warren root collar weevil, Hylobius warreni Wood, is a native, flightless insect distributed throughout the boreal forest of North America. It is an emerging problem in young plantings of lodgepole pine, Pinus contorta variety latifolia, in western Canada, where larval feeding can kill young trees by girdling the root collar. Susceptible plantings are becoming more abundant following salvage harvesting and replanting activities in the wake of an ongoing epidemic of mountain pine beetle, Dendroctonus ponderosae (Hopkins). Previous studies using mark-trap-recapture methods found that movement rates of adult H. warreni were elevated in areas with high numbers of dead trees, consistent with a hypothesis that the insects immigrate from stands with high mountain pine beetle-caused tree mortality to young plantings in search of live hosts. Sampling methods were necessarily biased to insects captured in traps; however, potentially missing individuals that had died, left the study area, or simply remained stationary. Here, we used harmonic radar to examine weevil movement in three different habitats: open field, forest edge, and within a forest. We were able to reliably monitor all but two of 36 insects initially released, over 96 h (4 d). Weevils released in the open field had the highest rates of movement, followed by weevils released at the forest edge, then weevils released within the forest. Movement declined with decreasing ambient air temperature. Our results suggest that weevils tend to be relatively stationary in areas of live hosts, and hence may concentrate in a suitable area once such habitat is found.


Asunto(s)
Migración Animal , Ecosistema , Gorgojos/fisiología , Animales , Colombia Británica , Femenino , Masculino , Pinus , Radar , Árboles
18.
J Theor Biol ; 250(1): 113-24, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-17963785

RESUMEN

The relative importance of extrinsic and intrinsic causes of variability is among the oldest unresolved problems in ecology. However, the interaction between large-scale intrinsic variability in species abundance and environmental heterogeneity is still unknown. We use a metacommunity model with disturbance-recovery dynamics to resolve the interaction between scales of environmental heterogeneity, biotic processes and of intrinsic variability. We explain how population density increases with environmental variability only when its scale matches that of intrinsic patterns of abundance, through their ability to develop in heterogeneous environments. Succession dynamics reveals how the strength of local species interactions, through its control of intrinsic variability, can in turn control the scale of metapopulation response to environmental scales. Our results show that the environment and species density might fail to show any correlation despite their strong causal association. They more generally suggest that the spatial scale of ecological processes might not be sufficient to build a predictive framework for spatially heterogeneous habitats, including marine reserve networks.


Asunto(s)
Modelos Biológicos , Dinámica Poblacional , Animales , Biodiversidad , Ecosistema , Ambiente , Fertilidad/fisiología , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...