Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985494

RESUMEN

The rapid, single-stage, flame-spheroidisation process, as applied to varying Fe3O4:CaCO3 powder combinations, provides for the rapid production of a mixture of dense and porous ferromagnetic microspheres with homogeneous composition, high levels of interconnected porosity and microsphere size control. This study describes the production of dense (35-80 µm) and highly porous (125-180 µm) Ca2Fe2O5 ferromagnetic microspheres. Correlated backscattered electron imaging and mineral liberation analysis investigations provide insight into the microsphere formation mechanisms, as a function of Fe3O4/porogen mass ratios and gas flow settings. Optimised conditions for the processing of highly homogeneous Ca2Fe2O5 porous and dense microspheres are identified. Induction heating studies of the materials produced delivered a controlled temperature increase to 43.7 °C, indicating that these flame-spheroidised Ca2Fe2O5 ferromagnetic microspheres could be highly promising candidates for magnetic induced hyperthermia and other biomedical applications.

2.
ACS Appl Mater Interfaces ; 12(45): 51026-51035, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33121243

RESUMEN

Internal combustion engines are used heavily in diverse applications worldwide. Achieving the most efficient operation is key to improving air quality as society moves to a decarbonized energy system. Insoluble deposits that form within internal combustion engine components including fuel injectors and filters negatively impact CO2 and pollutant emissions. Understanding the composition, origins, and formation mechanisms of these complex materials will be key to their mitigation however, previous attempts only afforded nondiagnostic chemical assignments and limited knowledge toward this. Here, we uncover the identity and spatial distribution of molecular species from a gasoline direct injector, diesel injector, and filter deposit in situ using a new hyphenation of secondary ion mass spectrometry and the state-of-the-art Orbitrap mass analyzer (3D OrbiSIMS) and elemental analysis. Through a high mass resolving power and tandem MS we unambiguously uncovered the identity, distribution, and origin of species including alkylbenzyl sulfonates and provide evidence of deposit formation mechanisms including formation of longer chain sulfonates at the gasoline deposit's surface as well as aromatization to form polycyclic aromatic hydrocarbons up to C66H20, which were prevalent in the lower depth of this deposit. Inorganic salts contributed significantly to the diesel injector deposit throughout its depth, suggesting contamination over multiple fueling cycles. Findings will enable several strategies to mitigate these insoluble materials such as implementing stricter worldwide fuel specifications, modifying additives with adverse reactivity, and synthesizing new fuel additives to solubilize deposits in the engine, thereby leading to less polluting vehicles.

3.
Nat Commun ; 10(1): 1851, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015437

RESUMEN

Dolomite (CaMg(CO3)2) plays a key role in the global carbon cycle. Yet, the chemical mechanisms that catalyze its formation remain an enigma. Here, using batch reactor experiments, we demonstrate an unexpected acceleration of dolomite formation by zinc in saline fluids, reflecting a not uncommon spatial association of dolomite with Mississippi Valley-type ores. The acceleration correlates with dissolved zinc concentration, irrespective of the zinc source tested (ZnCl2 and ZnO). Moreover, the addition of dissolved zinc counteracts the inhibiting effect of dissolved sulfate on dolomite formation. Integration with previous studies enables us to develop an understanding of the dolomitization pathway. Our findings suggest that the fluids' high ionic strength and zinc complexation facilitate magnesium ion dehydration, resulting in a dramatic decrease in induction time. This study establishes a previously unrecognized role of zinc in dolomite formation, and may help explain the changes in dolomite abundance through geological time.

4.
Front Microbiol ; 8: 1668, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943863

RESUMEN

Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in "simpler" secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using laboratory-based experiments and thermochemical modeling, it is possible to identify secondary alteration minerals that could potentially be used to distinguish between abiotic and biotic weathering processes on early Mars. This work will contribute to the interpretation of data from past, present, and future life detection missions to Mars.

5.
Mol Pharm ; 14(4): 959-973, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28206770

RESUMEN

Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer remains amorphous after coating of the rate controlling membrane, whether formed from an ethanol solution or an aqueous dispersion.


Asunto(s)
Preparaciones de Acción Retardada/química , Vidrio/química , Indometacina/química , Membranas/química , Soluciones Farmacéuticas/química , Cápsulas/química , Celulosa/análogos & derivados , Celulosa/química , Química Farmacéutica/métodos , Estudios Transversales , Excipientes/química , Polímeros/química , Polvos/química , Solubilidad , Tecnología Farmacéutica/métodos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...