Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 33(12): ar113, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35947498

RESUMEN

Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.


Asunto(s)
Calcio , Retículo Endoplásmico , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Mamíferos/metabolismo , Lípidos de la Membrana/metabolismo , Ratones
2.
J Vis Exp ; (184)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35758663

RESUMEN

Transmission electron microscopy has been long considered to be the gold standard for the visualization of cellular ultrastructure. However, analysis is often limited to two dimensions, hampering the ability to fully describe the three-dimensional (3D) ultrastructure and functional relationship between organelles. Volume electron microscopy (vEM) describes a collection of techniques that enable the interrogation of cellular ultrastructure in 3D at mesoscale, microscale, and nanoscale resolutions. This protocol provides an accessible and robust method to acquire vEM data using serial section transmission EM (TEM) and covers the technical aspects of sample processing through to digital 3D reconstruction in a single, straightforward workflow. To demonstrate the usefulness of this technique, the 3D ultrastructural relationship between the endoplasmic reticulum and mitochondria and their contact sites in liver hepatocytes is presented. Interorganelle contacts serve vital roles in the transfer of ions, lipids, nutrients, and other small molecules between organelles. However, despite their initial discovery in hepatocytes, there is still much to learn about their physical features, dynamics, and functions. Interorganelle contacts can display a range of morphologies, varying in the proximity of the two organelles to one another (typically ~10-30 nm) and the extent of the contact site (from punctate contacts to larger 3D cisternal-like contacts). The examination of close contacts requires high-resolution imaging, and serial section TEM is well suited to visualize the 3D ultrastructural of interorganelle contacts during hepatocyte differentiation, as well as alterations in hepatocyte architecture associated with metabolic diseases.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
3.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440494

RESUMEN

The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.


Asunto(s)
Proteínas de la Membrana , Fosfatidilserinas , Membrana Celular/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Sinaptotagminas/metabolismo
4.
J Cell Sci ; 135(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35437607

RESUMEN

Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans. Our results show that both N- and C-termini are critical for Jen1 trafficking to the PM, transport activity and endocytosis. Importantly, we provide evidence that Jen1 N- and C-termini undergo transport-dependent dynamic intramolecular interactions, which affect the transport activity and turnover of Jen1. Our results support an emerging concept where the cytoplasmic termini of PM transporters control transporter cell surface stability and function through flexible intramolecular interactions with each other. These findings might be extended to other MFS members to understand conserved and evolving mechanisms underlying transporter structure-function relationships. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Simportadores , Endocitosis/fisiología , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
5.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157024

RESUMEN

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Asunto(s)
Endosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Pruebas de Enzimas , Retroalimentación Fisiológica , Fosforilación/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Transducción de Señal
6.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32611771

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Membrana Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
BMC Biol ; 18(1): 28, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32169085

RESUMEN

BACKGROUND: Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS: We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS: Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.


Asunto(s)
Proteínas Portadoras/genética , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Curr Opin Cell Biol ; 63: 125-134, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32088611

RESUMEN

The endoplasmic reticulum (ER) forms an extensive network of membrane contact sites with intra-cellular organelles and the plasma membrane (PM). Interorganelle contacts have vital roles in membrane lipid and ion dynamics. In particular, ER-PM contacts are integral to numerous inter-cellular and intra-cellular signaling pathways including phosphoinositide lipid and calcium signaling, mechanotransduction, metabolic regulation, and cell stress responses. Accordingly, ER-PM contacts serve important signaling functions in excitable cells including neurons and muscle and endocrine cells. This review highlights recent advances in our understanding of the vital roles for ER-PM contacts in phosphoinositide and calcium signaling and how signaling pathways in turn regulate proteins that form and function at ER-PM contacts.


Asunto(s)
Señalización del Calcio/fisiología , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Fosfatidilinositoles/metabolismo , Animales , Transporte Biológico/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Membranas Mitocondriales/metabolismo , Neuronas/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-31349025

RESUMEN

The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico , Vías Biosintéticas , Proteínas Portadoras/metabolismo , Humanos , Fosfolípidos/metabolismo
10.
Dev Cell ; 51(4): 476-487.e7, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31743662

RESUMEN

Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/fisiología , Microscopía por Crioelectrón/métodos , Lípidos , Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402097

RESUMEN

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Curr Opin Cell Biol ; 53: 1-8, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29625188

RESUMEN

It is well over half a century since contacts between organelles such as the endoplasmic reticulum (ER), mitochondria, and the plasma membrane (PM) were first observed in electron microscopy studies. Still, these early images of seemingly rare organelle interactions continue to capture the attention and curiosity of cell biologists even today. From seminal studies first proposing roles for organelle cross talk in excitable cells, the field has now expanded to cover nearly all aspects of eukaryotic cell biology, from calcium and membrane lipid transport to vesicular trafficking, cell signaling, metabolism, and homeostasis. This review highlights recent discoveries pointing to vital roles for ER-PM contacts in membrane lipid dynamics and organization.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Eucariotas/citología , Animales , Transporte Biológico , Membrana Celular/metabolismo , Células Eucariotas/metabolismo , Homeostasis , Humanos , Mitocondrias/metabolismo , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 115(18): 4684-4689, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674454

RESUMEN

Lysosomes have an important role in cellular protein and organelle quality control, metabolism, and signaling. On the surface of lysosomes, the PIKfyve/Fab1 complex generates phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, which is critical for lysosomal membrane homeostasis during acute osmotic stress and for lysosomal signaling. Here, we identify the inverted BAR protein Ivy1 as an inhibitor of the Fab1 complex with a direct influence on PI-3,5-P2 levels and vacuole homeostasis. Ivy1 requires Ypt7 binding for its function, binds PI-3,5-P2, and interacts with the Fab1 kinase. Colocalization of Ivy1 and Fab1 is lost during osmotic stress. In agreement with Ivy1's role as a Fab1 regulator, its overexpression blocks Fab1 activity during osmotic shock and vacuole fragmentation. Conversely, loss of Ivy1, or lateral relocalization of Ivy1 on vacuoles away from Fab1, results in vacuole fragmentation and poor growth. Our data suggest that Ivy1 modulates Fab1-mediated PI-3,5-P2 synthesis during membrane stress and may allow adjustment of the vacuole membrane environment.


Asunto(s)
Proteínas Portadoras/metabolismo , Membranas Intracelulares/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas Portadoras/genética , Lisosomas/genética , Lisosomas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
14.
BMC Biol ; 15(1): 102, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089042

RESUMEN

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Asunto(s)
Ciclo Celular , Metabolismo de los Lípidos , Biogénesis de Organelos , Transporte Biológico , Membrana Celular/metabolismo
15.
Mol Biol Cell ; 27(7): 1170-80, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26864629

RESUMEN

Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca(2+)-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase-mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
16.
Mol Cell Biol ; 35(8): 1414-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666509

RESUMEN

Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mucinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada , Glicosilación , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteolisis , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Curr Opin Cell Biol ; 25(4): 434-42, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23522446

RESUMEN

Eukaryotic cells are divided into distinct membrane-bound organelles with unique identities and specialized metabolic functions. Communication between organelles must take place to regulate the size, shape, and composition of individual organelles, as well as to coordinate transport between organelles. The endoplasmic reticulum (ER) forms an expansive membrane network that contacts and participates in crosstalk with several other organelles in the cell, most notably the plasma membrane (PM). ER-PM junctions have well-established functions in the movement of small molecules, such as lipids and ions, between the ER and PM. Recent discoveries have revealed additional exciting roles for ER-PM junctions in the regulation of cell signaling, ER shape and architecture, and PM domain organization.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Eucariontes/citología , Transducción de Señal , Animales , Transporte Biológico , Membrana Celular/química , Retículo Endoplásmico/química , Eucariontes/química , Eucariontes/metabolismo , Humanos , Orgánulos/química , Orgánulos/metabolismo
18.
Dev Cell ; 23(6): 1129-40, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23237950

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/química , Membrana Celular/ultraestructura , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/genética , Fosfatidilinositoles , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Respuesta de Proteína Desplegada
19.
Mol Biol Cell ; 23(13): 2527-36, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22553352

RESUMEN

In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (K(D) = 3.8 µM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents.


Asunto(s)
Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Dominio Catalítico , Técnicas de Inactivación de Genes , Manosiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Esfingolípidos/biosíntesis , Técnicas del Sistema de Dos Híbridos
20.
EMBO J ; 31(13): 2882-94, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22562153

RESUMEN

Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...