Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26707, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434010

RESUMEN

We explored the application of Fisher information to the study of pandemics and illustrated the insights that can be gained using the COVID-19 pandemic, as a test case. To do so, we applied the Fisher information theory previously applied to periodic systems, to non-periodic dynamic systems. The resulting mathematical machinery was then used to compute the Fisher information measure, as the amount of information extracted from the time series for COVID-19 confirmed infections and deaths. The analysis was performed for the World as a whole and five nation-states: India, USA, Japan, Germany, and Chile. Several insights resulted from the study: (1) the information content of the time series varied widely for different time periods, over the course of the pandemic, (2) it is advisable not to fit model parameters or make policy decisions based on data from time periods with low Fisher information, (3) the most information about a wave of infections comes towards the end of the wave where the time series data has the most information about the dynamics of the pandemic, and (4) the quality of the time series data significantly affects the Fisher information value, and, therefore, what can be learned from studying the time series.

2.
Phys Rev E ; 108(4-1): 044303, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978656

RESUMEN

The analysis of systemic risk often revolves around examining various measures utilized by practitioners and policymakers. These measures typically focus on assessing the extent to which external events can impact a financial system, without delving into the nature of the initial shock. In contrast, our approach takes a symmetrical standpoint and introduces a set of measures centered on the quantity of external shock that the system can absorb before experiencing deterioration. To achieve this, we employ a linearized version of DebtRank, which facilitates a clear depiction of the onset of financial distress, thereby enabling accurate estimation of systemic risk. Through the utilization of spectral graph theory, we explicitly compute localized and uniform exogenous shocks, elucidating their behavior. Additionally, we expand the analysis to encompass heterogeneous shocks, necessitating computation via Monte Carlo simulations. We firmly believe that our approach is both comprehensive and intuitive, enabling a standardized assessment of failure risk in financial systems.

3.
Sci Rep ; 11(1): 24028, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911972

RESUMEN

Motivated by the problem of detection of cascades of defaults in economy, we developed a detection framework for an endogenous spreading based on causal motifs we define in this paper. We assume that the change of state of a vertex can be triggered either by an endogenous (related to the network) or an exogenous (unrelated to the network) event, that the underlying network is directed and that times when vertices changed their states are available. After simulating default cascades driven by different stochastic processes on different synthetic networks, we show that some of the smallest causal motifs can robustly detect endogenous spreading events. Finally, we apply the method to the data of defaults of Croatian companies and observe the time window in which an endogenous cascade was likely happening.

4.
Phys Rev E ; 103(4-1): 042304, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005874

RESUMEN

Evaluation of systemic risk in networks of financial institutions in general requires information of interinstitution financial exposures. In the framework of the DebtRank algorithm, we introduce an approximate method of systemic risk evaluation which requires only node properties, such as total assets and liabilities, as inputs. We demonstrate that this approximation captures a large portion of systemic risk measured by DebtRank. Furthermore, using Monte Carlo simulations, we investigate network structures that can amplify systemic risk. Indeed, while no topology in general sense is a priori more stable if the market is liquid (i.e., the price of transaction creation is small) [T. Roukny et al., Sci. Rep. 3, 2759 (2013)10.1038/srep02759], a larger complexity is detrimental for the overall stability [M. Bardoscia et al., Nat. Commun. 8, 14416 (2017)10.1038/ncomms14416]. Here we find that the measure of scalar assortativity correlates well with level of systemic risk. In particular, network structures with high systemic risk are scalar assortative, meaning that risky banks are mostly exposed to other risky banks. Network structures with low systemic risk are scalar disassortative, with interactions of risky banks with stable banks.

5.
Nonlinear Dyn ; 101(3): 1635-1642, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32839639

RESUMEN

Motivated by the many diverse responses of different countries to the COVID-19 emergency, here we develop a toy model of the dependence of the epidemics spreading on the availability of tests for disease. Our model, that we call SUDR+K, grounds on the usual SIR model, with the difference of splitting the total fraction of infected individuals in two components: patients that are still undetected and patients that have been already detected through tests. Moreover, we assume that available tests increase at a constant rate from the beginning of epidemics but are consumed to detect infected individuals. Strikingly, we find a bi-stable behavior between a phase with a giant fraction of infected and a phase with a very small fraction. We show that the separation between these two regimes is governed by a match between the rate of testing and a rate of infection spread at given time. We also show that the existence of two phases does not depend on the mathematical choice of the form of the term describing the rate at which undetected individuals are tested and detected. Presented research implies that a vigorous early testing activity, before the epidemics enters its giant phase, can potentially keep epidemics under control, and that even a very small change of the testing rate around the bi-stable point can determine a fluctuation of the size of the whole epidemics of various orders of magnitude. For the real application of realistic model to ongoing epidemics, we would gladly collaborate with field epidemiologists in order to develop quantitative models of testing process.

6.
Phys Rev Lett ; 114(24): 248701, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26197016

RESUMEN

Detection of patient zero can give new insights to epidemiologists about the nature of first transmissions into a population. In this Letter, we study the statistical inference problem of detecting the source of epidemics from a snapshot of spreading on an arbitrary network structure. By using exact analytic calculations and Monte Carlo estimators, we demonstrate the detectability limits for the susceptible-infected-recovered model, which primarily depend on the spreading process characteristics. Finally, we demonstrate the applicability of the approach in a case of a simulated sexually transmitted infection spreading over an empirical temporal network of sexual interactions.


Asunto(s)
Trazado de Contacto/métodos , Modelos Estadísticos , Enfermedades de Transmisión Sexual/epidemiología , Simulación por Computador , Métodos Epidemiológicos , Humanos , Método de Montecarlo , Enfermedades de Transmisión Sexual/transmisión
7.
PLoS One ; 9(12): e99515, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25470498

RESUMEN

A stream of unstructured news can be a valuable source of hidden relations between different entities, such as financial institutions, countries, or persons. We present an approach to continuously collect online news, recognize relevant entities in them, and extract time-varying networks. The nodes of the network are the entities, and the links are their co-occurrences. We present a method to estimate the significance of co-occurrences, and a benchmark model against which their robustness is evaluated. The approach is applied to a large set of financial news, collected over a period of two years. The entities we consider are 50 countries which issue sovereign bonds, and which are insured by Credit Default Swaps (CDS) in turn. We compare the country co-occurrence networks to the CDS networks constructed from the correlations between the CDS. The results show relatively small, but significant overlap between the networks extracted from the news and those from the CDS correlations.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Humanos , Modelos Teóricos , Sistemas en Línea
8.
Phys Rev Lett ; 109(20): 208701, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23215527

RESUMEN

Large scale traffic networks are an indispensable part of contemporary human mobility and international trade. Networks of airport travel and cargo ship movements are invaluable for the understanding of human mobility patterns [R. Guimera et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7794 (2005))], epidemic spreading [V. Colizza et al., Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006)], global trade [International Maritime Organization, http://www.imo.org/], and spread of invasive species [G. M. Ruiz et al., Nature (London) 408, 49 (2000)]. Different studies [M. Barthelemy, Phys. Rept. 499, 1 (2011)] point to the universal character of some of the exponents measured in such networks. Here we show that exponents which relate (i) the strength of nodes to their degree and (ii) weights of links to degrees of nodes that they connect have a geometric origin. We present a simple robust model which exhibits the observed power laws and relates exponents to the dimensionality of 2D space in which traffic networks are embedded. We show that the relation between weight strength and degree is s(k)~k(3/2), the relation between distance strength and degree is s(d)(k)~k(3/2), and the relation between weight of link and degrees of linked nodes is w(ij)~(k(i)k(j))(1/2) on the plane 2D surface. We further analyze the influence of spherical geometry, relevant for the whole planet, on exact values of these exponents. Our model predicts that these exponents should be found in future studies of port networks and it imposes constraints on more refined models of port networks.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016117, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19658784

RESUMEN

Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016106, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18351914

RESUMEN

Although most of the real networks contain a mixture of directed and bidirectional (reciprocal) connections, the reciprocity r has received little attention as a subject of theoretical understanding. We study the expected reciprocity of networks with arbitrary input and output degree sequences and given 2-node degree correlations by means of statistical ensemble approach. We demonstrate that degree correlations are crucial to understand the reciprocity in real networks and a hierarchy of correlation contributions to r is revealed. Numerical experiments using network randomization methods show very good agreement to our analytical estimations.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(1 Pt 2): 016117, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15324139

RESUMEN

Social free energy has been recently introduced as a measure of social action obtainable in a given social system, without changes in its structure. The authors of this paper argue that social free energy surpasses the gap between the verbally formulated value sets of social systems and the quantitatively based predictions. This point is further developed by analyzing the relation between the social and the physical free energy. Generically, this is done for a particular type of social dynamics. The extracted type of social dynamics is one of many realistic types of the differing proportion of social and economic elements. Numerically, this has been done for a toy model of interacting agents. The values of the social and physical free energies are, within the numerical accuracy, equivalent in the class of nontrivial, quasistationary model states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...