Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 4: 4203, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24569599

RESUMEN

In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements.


Asunto(s)
Conductometría/métodos , Membranas Artificiales , Microscopía de Sonda de Barrido/métodos , Nanopartículas/química , Electricidad Estática , Óxido de Zinc/química , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales/métodos
2.
Sci Rep ; 3: 3352, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24284731

RESUMEN

We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.

3.
Langmuir ; 29(47): 14512-8, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24152147

RESUMEN

The photoactive properties of TiO2 are employed to develop surfaces with self-cleaning capabilities. Clearly, the fine-tuning of such surfaces for different applications relies on a holistic understanding of the different aspects that induce the self-cleaning behavior. Among those, the mechanisms responsible for the photoinduced surface alteration in the TiO2 allotropes are still not completely understood. In this study, TiO2 polymorphs nanopowders are investigated by combining the high spatial resolution observables of recently developed atomic force microscopy (AFM) based force spectroscopy techniques with diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Phase maps under irradiated and nonirradiated conditions for anatase and rutile suggest the existence of two distinct behaviors that are further discerned by energy analysis of amplitude and phase vs distance curves. Independently, surface analysis of anatase and rutile by means of DRIFTS spectroscopy reveals a readily distinguishable coexistence of dissociated water and molecular water on the two phases, confirming the stronger photoactivity of anatase. The peculiarity of the surface interaction under UV exposure is further investigated by reconstructing the force profiles between the oscillating AFM tip and the TiO2 phases with the attempt of gaining a better understanding of the mechanisms that cause the different hydrophilic properties in the TiO2 allotropes.

4.
Nanotechnology ; 24(22): 225703, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23635384

RESUMEN

The need to resolve the electrical properties of confined structures (CNTs, quantum dots, nanorods, etc) is becoming increasingly important in the field of electronic and optoelectronic devices. Here we propose an approach based on amplitude modulated electrostatic force microscopy to obtain measurements at small tip-sample distances, where highly nonlinear forces are present. We discuss how this improves the lateral resolution of the technique and allows probing of the electrical and surface properties. The complete force field at different tip biases is employed to derive the local work function difference. Then, by appropriately biasing the tip-sample system, short-range forces are reconstructed. The short-range component is then separated from the generic tip-sample force in order to recover the pure electrostatic contribution. This data can be employed to derive the tip-sample capacitance curve and the sample dielectric constant. After presenting a theoretical model that justifies the need for probing the electrical properties of the sample in the vicinity of the surface, the methodology is presented in detail and verified experimentally.

5.
Opt Lett ; 33(18): 2044-6, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794925

RESUMEN

A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far screen, has been developed. It is shown that the projected light intensity is simply correlated to the angle-resolved efficiency of a concentrator, conventionally obtained by a direct illumination procedure. The method has been applied by simulating simple reflective nonimaging and Fresnel lens concentrators.

6.
Phys Rev Lett ; 90(3): 034801, 2003 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-12570493

RESUMEN

We present an idea for creation of a crystalline undulator and report its first realization. One face of a silicon crystal was given periodic microscratches (grooves) by means of a diamond blade. The x-ray tests of the crystal deformation due to a given periodic pattern of surface scratches have shown that a sinusoidal-like shape is observed on both the scratched surface and the opposite (unscratched) face of the crystal; that is, a periodic sinusoidal-like deformation goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in a crystalline undulator, a novel compact source of radiation.

7.
Phys Rev Lett ; 87(9): 094802, 2001 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-11531570

RESUMEN

A silicon crystal was used to channel and extract 70 GeV protons from the U-70 accelerator with an efficiency of 85.3+/-2.8%, as measured for a beam of approximately 10(12) protons directed towards crystals of approximately 2 mm length in spills of approximately 2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This demonstration is important in devising a more efficient use of the U-70 accelerator in Protvino and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...