Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 22(2): 209-220, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847239

RESUMEN

The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS: These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Citocinas , Factor de Necrosis Tumoral alfa , Muerte Celular , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108784

RESUMEN

Chemoresistance is a major health concern affecting cancer patients. Resistance is multifactorial, with one mechanism being the increased expression of ABC transporters (such as MDR1 and MRP1), which are drug efflux transporters capable of preventing intracellular accumulation of drugs and cell death. Our lab showed that the loss of Adenomatous Polyposis Coli (APC) caused an intrinsic resistance to doxorubicin (DOX), potentially through an enhanced tumor-initiating cell (TIC) population and the increased activation of STAT3 mediating the expression of MDR1 in the absence of WNT being activated. Here, in primary mouse mammary tumor cells, the loss of APC decreased the accumulation of DOX while increasing the protein levels of MDR1 and MRP1. We demonstrated decreased APC mRNA and protein levels in breast cancer patients compared with normal tissue. Using patient samples and a panel of human breast cancer cell lines, we found no significant trend between APC and either MDR1 or MRP1. Since the protein expression patterns did not show a correlation between the ABC transporters and the expression of APC, we evaluated the drug transporter activity. In mouse mammary tumor cells, the pharmacological inhibition or genetic silencing of MDR1 or MRP1, respectively, decreased the TIC population and increased DOX-induced apoptosis, supporting the use of ABC transporter inhibitors as therapeutic targets in APC-deficient tumors.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Muerte Celular , Línea Celular Tumoral , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
3.
Cancer Drug Resist ; 5(1): 229-232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582533

RESUMEN

Triple negative breast cancer (TNBC) is marked by a lack of expression of the Estrogen Receptor, Progesterone Receptor, and human epidermal growth factor receptor 2. Therefore, targeted therapies are being investigated based on the expression profiles of tumors. Due to the potential for acquired and intrinsic resistance, there is a need for combination therapy to overcome resistance. In the article by Lee et al., the authors identify that, while prexasertib (a CHK1 inhibitor) lacks efficacy alone, combination with an EGFR inhibitor provides synergistic anti-tumor effects. Advances in targeted therapy for TNBC will benefit the clinical landscape for this disease, with this study initiating a new avenue of investigation.

4.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105836

RESUMEN

Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC's interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt/fisiología , Poliposis Adenomatosa del Colon/complicaciones , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Genes Supresores de Tumor , Humanos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Vía de Señalización Wnt/efectos de los fármacos
5.
Neoplasia ; 21(12): 1143-1150, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31759252

RESUMEN

Chemoresistance is one of the leading causes of cancer-related deaths in the United States. Triple negative breast cancer (TNBC), a subtype lacking the known breast cancer receptors used for targeted therapy, is reliant on chemotherapy as the standard of care. The Adenomatous Polyposis Coli (APC) tumor suppressor is mutated or hypermethylated in 70% of sporadic breast cancers with APC-deficient tumors resembling the TNBC subtype. Using mammary tumor cells from the ApcMin/+ mouse model crossed to the Polyoma middle T antigen (PyMT) transgenic model, we previously showed that APC loss decreased sensitivity to doxorubicin (DOX). Understanding the molecular basis for chemoresistance is essential for the advancement of novel therapeutic approaches to ultimately improve patient outcomes. Resistance can be caused via different methods, but here we focus on the DNA repair response with DOX treatment. We show that MMTV-PyMT;ApcMin/+ cells have decreased DNA damage following 24 hour DOX treatment compared to MMTV-PyMT;Apc+/+ cells. This decreased damage is first observed 24 hours post-treatment and continues throughout 24 hours of drug recovery. Activation of DNA damage response pathways (ATM, Chk1, and Chk2) are decreased at 24 hours DOX-treatment in MMTV-PyMT;ApcMin/+ cells compared to control cells, but show activation at earlier time points. Using inhibitors that target DNA damage repair kinases (ATM, ATR, and DNA-PK), we showed that ATM and DNA-PK inhibition increased DOX-induced apoptosis in the MMTV-PyMT;ApcMin/+ cells. In the current work, we demonstrated that APC loss imparts resistance through decreased DNA damage response, which can be attenuated through DNA repair inhibition, suggesting the potential clinical use of DNA repair inhibitions as combination therapy.


Asunto(s)
Daño del ADN , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Eliminación de Gen , Genes APC , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama , Línea Celular Tumoral , Proliferación Celular , Reparación del ADN/efectos de los fármacos , Femenino , Humanos , Ratones , Transducción de Señal
6.
Cell Mol Gastroenterol Hepatol ; 5(3): 253-271, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29675451

RESUMEN

BACKGROUND & AIMS: Cystic fibrosis (CF) patients and CF mouse models have increased risk for gastrointestinal tumors. CF mice show augmented intestinal proliferation of unknown etiology and an altered intestinal environment. We examined the role of the cystic fibrosis transmembrane conductance regulator (Cftr) in Wnt/ß-catenin signaling, stem cell proliferation, and its functional expression in the active intestinal stem cell (ISC) population. Dysregulation of intracellular pH (pHi) in CF ISCs was investigated for facilitation of Wnt/ß-catenin signaling. METHODS: Crypt epithelia from wild-type (WT) and CF mice were compared ex vivo and in intestinal organoids (enteroids) for proliferation and Wnt/ß-catenin signaling by standard assays. Cftr in ISCs was assessed by immunoblot of sorted Sox9 enhanced green fluorescent protein(EGFP) intestinal epithelia and pHi regulation by confocal microfluorimetry of leucine-rich G-protein-coupled receptor 5 ISCs. Plasma membrane association of the Wnt transducer Dishevelled 2 (Dvl2) was assessed by fluorescence imaging of live enteroids from WT and CF mice crossed with Dvl2-EGFP/ACTB-tdTomato,-EGFP)Luo/J (RosamT/mG) mice. RESULTS: Relative to WT, CF intestinal crypts showed an ∼30% increase in epithelial and Lgr5+ ISC proliferation and increased Wnt/ß-catenin signaling. Cftr was expressed in Sox9EGFPLo ISCs and loss of Cftr induced an alkaline pHi in ISCs. CF crypt-base columnar cells showed a generalized increase in plasma membrane Dvl2-EGFP association as compared with WT. Dvl2-EGFP membrane association was charge- and pH-dependent and increased in WT crypt-base columnar cells by Cftr inhibition. CONCLUSIONS: CF intestine shows increased ISC proliferation and Wnt/ß-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/ß-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

7.
Oncotarget ; 8(61): 102868-102879, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262529

RESUMEN

Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT;ApcMin/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT;ApcMin/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT;ApcMin/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

8.
Am J Physiol Gastrointest Liver Physiol ; 310(2): G70-80, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26542396

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.


Asunto(s)
Bicarbonatos/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Animales , Antiportadores de Cloruro-Bicarbonato/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Concentración de Iones de Hidrógeno , Ratones , Ratones Noqueados
9.
Am J Transl Res ; 7(4): 670-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26064436

RESUMEN

The efficacy of two highly specific IκB-α kinase ß (IKK-ß) inhibitors in reducing the enhanced basal activation of the NF-κB pathway in dystrophic muscle was assessed by determining the effects of these inhibitors in increasing the expression of cytosolic IκB-α and reducing the enhanced expression of nuclear p65 in adult mdx costal diaphragm preparations. In vivo and in vitro treatment with BMS-345541 was ineffective at altering these variables when administered at concentrations that were highly effective in models of acute inflammation. PHA-408 increased cytosolic IκB-α and reduced nuclear p65 at a concentration in vitro (20 µM) that was 500 fold higher than the IC50 for inhibiting purified activity. Long term daily oral administration of PHA-408 increased cytosolic IκB-α but did not influence nuclear p65. Long term intraperitoneal administration of PHA-408 reduced nuclear p65 by approximately 50%. In comparison to their potent effects in models of acute inflammation, these results indicate a reduced efficacy of the specific IKKß inhibitors in ameliorating the enhanced basal activation of the NF-κB pathway in dystrophic muscle, and suggest that the therapeutic potential of IKK-ß inhibitors in treating muscular dystrophy would be enhanced by simultaneous treatment with agents which more directly interfere with NF-κB transactivation.

10.
Muscle Nerve ; 43(5): 694-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21462203

RESUMEN

INTRODUCTION: In this study we investigated the action of RAP-031, a soluble activin receptor type IIB (ActRIIB) comprised of a form of the ActRIIB extracellular domain linked to a murine Fc, and the NF-κB inhibitor, ursodeoxycholic acid (UDCA), on the whole body strength of mdx mice. METHODS: The whole body tension (WBT) method of assessing the forward pulling tension (FPT) exerted by dystrophic (mdx) mice was used. RESULTS: RAP-031 produced a 41% increase in body mass and a 42.5% increase in FPT without altering the FPT normalized for body mass (WBT). Coadministration of RAP-031 with UDCA produced increases in FPT that were associated with an increase in WBT. CONCLUSIONS: Myostatin inhibition increases muscle mass without altering the fundamental weakness characteristic of dystrophic muscle. Cotreatment with an NF-κB inhibitor potentiates the effects of myostatin inhibition in improving FPT in mdx mice.


Asunto(s)
Receptores de Activinas Tipo II/fisiología , Tono Muscular/fisiología , Músculo Esquelético/fisiología , Distrofia Muscular Animal/fisiopatología , Receptores de Activinas Tipo II/farmacología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Tono Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...