Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr Health Aging ; 25(10): 1167-1178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34866144

RESUMEN

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The strongest genetic risk factor for sporadic AD is carriage of the ε4 allele of the Apolipoprotein E (APOE) gene. Strategies to slow the progression of AD, including dietary interventions, may be modified by the pathogenic effect of this polymorphism. Our objective in this review was to determine the extent and quality of the literature investigating how dietary factors and interventions interact with the APOE ε4 genotype to impact cognitive decline in AD. To that end, we performed a systematic scoping review of published English-language articles involving human subjects. We found evidence suggesting that adherence to a Mediterranean diet may reduce cognitive decline among APOE ε4 carriers, whereas ketogenic agents appear to be ineffective. Diets high in saturated fats may be particularly harmful for APOE ε4 carriers. We identified several topics, including the use of ω-3 fatty acid and antioxidant supplements, for which additional high level evidence is needed.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Disfunción Cognitiva , Dieta , Enfermedades Neurodegenerativas , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Apolipoproteína E4/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/prevención & control , Genotipo , Humanos
2.
Proc Natl Acad Sci U S A ; 98(26): 15179-84, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11742087

RESUMEN

Polyglutamine diseases include at least nine neurodegenerative disorders, each caused by a CAG repeat expansion in a different gene. Accumulation of mutant polyglutamine-containing proteins occurs in patients, and evidence from cell culture and animal experiments suggests the nucleus as a site of pathogenesis. To understand the consequences of nuclear accumulation, we created a cell culture system with nuclear-targeted polyglutamine. In our system, cell death can be mitigated by overexpression of full-length cAMP response element binding protein (CREB)-binding protein (CBP) or its amino-terminal portion alone. CBP is one of several histone acetyltransferases sequestered by polyglutamine inclusions. We found histone acetylation to be reduced in cells expressing mutant polyglutamine. Reversal of this hypoacetylation, which can be achieved either by overexpression of CBP or its amino terminus or by treatment with deacetylase inhibitors, reduced cell loss. These findings suggest that nuclear accumulation of polyglutamine can lead to altered protein acetylation in neurons and indicate a novel therapeutic strategy for polyglutamine disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Péptidos/antagonistas & inhibidores , Animales , Proteína de Unión a CREB , Muerte Celular/efectos de los fármacos , Línea Celular , Ratones , Neuronas Motoras/efectos de los fármacos , Proteínas Nucleares/genética , Péptidos/toxicidad , Receptores Androgénicos/genética , Transactivadores/genética , Transfección
3.
Nature ; 413(6857): 739-43, 2001 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-11607033

RESUMEN

Proteins with expanded polyglutamine repeats cause Huntington's disease and other neurodegenerative diseases. Transcriptional dysregulation and loss of function of transcriptional co-activator proteins have been implicated in the pathogenesis of these diseases. Huntington's disease is caused by expansion of a repeated sequence of the amino acid glutamine in the abnormal protein huntingtin (Htt). Here we show that the polyglutamine-containing domain of Htt, Htt exon 1 protein (Httex1p), directly binds the acetyltransferase domains of two distinct proteins: CREB-binding protein (CBP) and p300/CBP-associated factor (P/CAF). In cell-free assays, Httex1p also inhibits the acetyltransferase activity of at least three enzymes: p300, P/CAF and CBP. Expression of Httex1p in cultured cells reduces the level of the acetylated histones H3 and H4, and this reduction can be reversed by administering inhibitors of histone deacetylase (HDAC). In vivo, HDAC inhibitors arrest ongoing progressive neuronal degeneration induced by polyglutamine repeat expansion, and they reduce lethality in two Drosophila models of polyglutamine disease. These findings raise the possibility that therapy with HDAC inhibitors may slow or prevent the progressive neurodegeneration seen in Huntington's disease and other polyglutamine-repeat diseases, even after the onset of symptoms.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Glutamina/metabolismo , Inhibidores de Histona Desacetilasas , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae , Transactivadores/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteína de Unión a CREB , Modelos Animales de Enfermedad , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína p300 Asociada a E1A , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Histona Acetiltransferasas , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Degeneración Nerviosa , Proteínas del Tejido Nervioso/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Proteínas Nucleares/química , Células PC12 , Estructura Terciaria de Proteína , Ratas , Secuencias Repetitivas de Aminoácido , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
4.
Proc Natl Acad Sci U S A ; 97(12): 6763-8, 2000 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-10823891

RESUMEN

Huntington's Disease (HD) is caused by an expansion of a polyglutamine tract within the huntingtin (htt) protein. Pathogenesis in HD appears to include the cytoplasmic cleavage of htt and release of an amino-terminal fragment capable of nuclear localization. We have investigated potential consequences to nuclear function of a pathogenic amino-terminal region of htt (httex1p) including aggregation, protein-protein interactions, and transcription. httex1p was found to coaggregate with p53 in inclusions generated in cell culture and to interact with p53 in vitro and in cell culture. Expanded httex1p represses transcription of the p53-regulated promoters, p21(WAF1/CIP1) and MDR-1. httex1p was also found to interact in vitro with CREB-binding protein (CBP) and mSin3a, and CBP to localize to neuronal intranuclear inclusions in a transgenic mouse model of HD. These results raise the possibility that expanded repeat htt causes aberrant transcriptional regulation through its interaction with cellular transcription factors which may result in neuronal dysfunction and cell death in HD.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Células Cultivadas , Humanos , Proteína Huntingtina , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos
5.
Mol Cell Biol ; 18(7): 3752-61, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9632758

RESUMEN

Previous in vitro studies have shown that initiation of transcription of ribosomal DNA (rDNA) in the yeast Saccharomyces cerevisiae involves an interaction of upstream activation factor (UAF) with the upstream element of the promoter, forming a stable UAF-template complex; together with TATA-binding protein (TBP), UAF then recruits an essential factor, core factor (CF), to the promoter, forming a stable preinitiation complex. TBP interacts with both UAF and CF in vitro. In addition, a subunit of UAF, Rrn9p, interacts with TBP in vitro and in the two-hybrid system, suggesting the possible importance of this interaction for UAF function. Using the yeast two-hybrid system, we have identified three mutations in RRN9 that abolish the interaction of Rrn9p with TBP without affecting its interaction with Rrn10p, another subunit of UAF. Yeast cells containing any one of these individual mutations, L110S, L269P, or L274Q, did not show any growth defects. However, cells containing a combination of L110S with one of the other two mutations showed a temperature-sensitive phenotype, and this phenotype was suppressed by fusing the mutant genes to SPT15, which encodes TBP. In addition, another mutation (F186S), which disrupts both Rrn9p-TBP and Rrn9p-Rrn10p interactions in the two-hybrid system, abolished UAF function in vivo, and this mutational defect was suppressed by fusion of the mutant gene to SPT15 combined with overexpression of Rrn10p. These experiments demonstrate that the interaction of UAF with TBP, which is presumably achieved by the interaction of Rrn9p with TBP, is indeed important for high-level transcription of rDNA by RNA polymerase I in vivo.


Asunto(s)
ADN Ribosómico/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Fusión Artificial Génica , Sitios de Unión , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Genes Fúngicos , Mutagénesis , Hibridación de Ácido Nucleico , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box , Transactivadores/metabolismo , Factores de Transcripción/genética
6.
Genes Dev ; 10(20): 2551-63, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8895657

RESUMEN

Transcription of Saccharomyces cerevisiae rDNA by RNA polymerase I involves at least two transcription factors characterized previously: upstream activation factor (UAF) consisting of Rrn5p, Rrn9p, Rrn10p, and two more uncharacterized proteins; and core factor (CF) consisting of Rrn6p, Rrn7p, and Rrn11p. UAF interacts directly with an upstream element of the promoter and mediates its stimulatory function, and CF subsequently joins a stable preinitiation complex. The TATA-binding protein (TBP) has been known to be involved in transcription by all three nuclear RNA polymerases. We found that TBP interacts specifically with both UAF and CF, the interaction with UAF being stronger than that with CF. Using extracts from a TBP (I143N) mutant, it was shown that TBP is required for stimulation of transcription mediated by the upstream element, but not for basal transcription directed by a template without the upstream element. By template competition experiments, it was shown that TBP is required for UAF-dependent recruitment of CF to the rDNA promoter, explaining the TBP requirement for stimulatory activity of the upstream element. We also studied protein-protein interactions and found specific interactions of TBP with Rrn6p and with Rrn9p both in vitro and in the yeast two-hybrid system in vivo. Thus, these two interactions may be involved in the interactions of TBP with CF and UAF, respectively, contributing to the recruitment of CF to the rDNA promoter. Additionally, we observed an interaction between Rrn9p and Rrn7p both in vitro and in the two-hybrid system; thus, this interaction might also contribute to the recruitment of CF.


Asunto(s)
ADN Ribosómico , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Regiones Promotoras Genéticas , Proteína de Unión a TATA-Box , Moldes Genéticos
7.
J Biol Chem ; 271(35): 21062-7, 1996 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-8702872

RESUMEN

A new gene, RRN11, has been defined by certain rrn mutants of Saccharomyces cerevisiae which are defective specifically in the transcription of 35 S rRNA gene by RNA polymerase I (pol I). We have cloned the gene and found that it encodes a protein of 507 amino acids. We have used a strain with the chromosomal RRN11 deleted and carrying HA1 epitope-tagged RRN11 on a plasmid to isolate a protein complex containing the protein encoded by RRN11. This protein complex complemented rrn6 mutant extracts, which were previously shown to be deficient in the essential pol I transcription factor called Rrn6/7 complex or core factor (CF). The CF complex was previously shown to consist of three proteins, the 102- and 60-kDa subunits encoded by RRN6 and RRN7, respectively, and the 66-kDa subunit. The results of the above complementation experiments combined with mobility of Rrn11p in SDS-polyacrylamide gel electrophoresis analysis relative to Rrn6p and Rrn7p led to the conclusion that RRN11 encodes the 66-kDa subunit of CF. Glutathione S-transferase-Rrn11p fusion protein was found to bind strongly to 35S-labeled Rrn6p and Rrn7p but only weakly to 35S-labeled TATA-binding protein. Similarly, glutathione S-transferase-Rrn7p fusion protein bound strongly to 35S-labeled Rrn6p and Rrn11p but only weakly to 35S-labeled TATA-binding protein. These results are consistent with the fact that one can purify CF consisting of Rrn6p, Rrn7p, and Rrn11p from yeast cell extracts, but the purified complex does not contain TATA-binding protein. RRN11 was shown to be an essential gene, and [3H]uridine pulse experiments demonstrated directly that RRN11 is essential for rDNA transcription by pol I in vivo. Thus all three subunits of CF are essential for rDNA transcription. Because of the resemblance of CF to mammalian essential pol I transcription factor SL1, the amino acid sequences of Rrn11p and the other two subunits of CF were compared with those of the three TATA-binding protein-associated factors (TAFs) in the human SL1, TAFI48, TAFI63, and TAFI110. No significant similarity was detected between two sets of the proteins. Similarity as well as differences between CF and SL1 are discussed.


Asunto(s)
ADN Ribosómico/genética , Proteínas Fúngicas/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1 , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Secuencia de Aminoácidos , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 270(36): 21220-5, 1995 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-7673155

RESUMEN

The malate dehydrogenase isozyme MDH3 of Saccharomyces cerevisiae was found to be localized to peroxisomes by cellular fractionation and density gradient centrifugation. However, unlike other yeast peroxisomal enzymes that function in the glyoxylate pathway, MDH3 was found to be refractory to catabolite inactivation, i.e. to rapid inactivation and degradation following glucose addition. To examine the structural requirements for organellar localization, the Ser-Lys-Leu carboxyl-terminal tripeptide, a common motif for localization of peroxisomal proteins, was removed by mutagenesis of the MDH3 gene. This resulted in cytosolic localization of MDH3 in yeast transformants. To examine structural requirements for catabolite inactivation, a 12-residue amino-terminal extension from the yeast cytosolic MDH2 isozyme was added to the amino termini of the peroxisomal and mislocalized "cytosolic" forms of MDH3. This extension was previously shown to be essential for catabolite inactivation of MDH2 but failed to confer this property to MDH3. The mislocalized cytosolic forms of MDH3 were found to be catalytically active and competent for metabolic functions normally provided by MDH2.


Asunto(s)
Malato Deshidrogenasa/genética , Microcuerpos/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Citosol/enzimología , ADN Recombinante , Escherichia coli/genética , Glucosa/farmacología , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
9.
Genes Dev ; 8(19): 2349-62, 1994 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-7958901

RESUMEN

Previously, we have isolated mutants of Saccharomyces cerevisiae primarily defective in the transcription of 35S rRNA genes by RNA polymerase I and have identified a number of genes (RRN genes) involved in this process. We have now cloned the RRN6 and RRN7 genes, determined their nucleotide sequences, and found that they encode proteins of calculated molecular weights of 102,000 and 60,300, respectively. Extracts prepared from rrn6 and rrn7 mutants were defective in in vitro transcription of rDNA templates. We used extracts from strains containing epitope-tagged wild-type Rrn6 or Rrn7 proteins to purify protein components that could complement these mutant extracts. By use of immunoaffinity purification combined with biochemical fractionation, we obtained a highly purified preparation (Rrn6/7 complex), which consisted of Rrn6p, Rrn7p, and another protein with an apparent molecular weight of 66,000, but which did not contain the TATA-binding protein (TBP). This complex complemented both rrn6 and rrn7 mutant extracts. Template commitment experiments carried out with this purified Rrn6/7 complex and with rrn6 mutant extracts have demonstrated that the Rrn6/7 complex does not bind stably to the rDNA template by itself, but its binding is dependent on the initial binding of some other factor(s) and that the Rrn6/7 complex is required for the formation of a transcription-competent preinitiation complex. These observations are discussed in comparison to in vitro rDNA transcription systems from higher eukaryotes.


Asunto(s)
ADN Ribosómico/genética , Proteínas Fúngicas/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Hongos/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genes Fúngicos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , ARN Polimerasa I/metabolismo , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Transcripción Genética
10.
J Biol Chem ; 267(34): 24708-15, 1992 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-1447211

RESUMEN

The MDH3 isozyme of Saccharomyces cerevisiae was purified from a haploid strain containing disruptions in genomic loci encoding the mitochondrial MDH1 and nonmitochondrial MDH2 isozymes. Partial amino acid sequence analysis of the purified enzyme was conducted and used to plan polymerase chain reaction techniques to clone the MDH3 gene. The isolated gene was found to encode a 343-residue polypeptide with a molecular weight of 37,200. The deduced amino acid sequence was closely related to those of MDH1 (50% residue identity) and of MDH2 (43% residue identity). The MDH3 sequence was found to contain a carboxyl-terminal SKL tripeptide, characteristic of many peroxisomal enzymes, and immunochemical analysis was used to confirm organellar localization of the MDH3 isozyme. Levels of MDH3 were determined to be elevated in cells grown with acetate as a carbon source, and under these conditions, MDH3 contributed approximately 10% of the total cellular malate dehydrogenase activity. Disruption of the chromosomal MDH3 locus produced a reduction in cellular growth rates on acetate, consistent with the presumed function of this isozyme in the glyoxylate pathway of yeast. Combined disruption of MDH1, MDH2, and MDH3 loci in a haploid strain resulted in the absence of detectable cellular malate dehydrogenase activity.


Asunto(s)
Genes Fúngicos , Isoenzimas/genética , Malato Deshidrogenasa/genética , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Fúngicos , Clonación Molecular , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Escherichia coli/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Malato Deshidrogenasa/aislamiento & purificación , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Reacción en Cadena de la Polimerasa/métodos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido
11.
Arch Biochem Biophys ; 293(1): 93-102, 1992 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-1731644

RESUMEN

The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.


Asunto(s)
Malato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Clonación Molecular , Escherichia coli/enzimología , Expresión Génica , Prueba de Complementación Genética , Técnicas In Vitro , Malato Deshidrogenasa/genética , Mitocondrias/enzimología , Datos de Secuencia Molecular , Consumo de Oxígeno , Ratas , Especificidad de la Especie
12.
Arch Biochem Biophys ; 287(2): 276-82, 1991 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1898005

RESUMEN

Among highly conserved residues in eucaryotic mitochondrial malate dehydrogenases are those with roles in maintaining the interactions between identical monomeric subunits that form the dimeric enzymes. The contributions of two of these residues, Asp-43 and His-46, to structural stability and catalytic function were investigated by construction of mutant enzymes containing Asn-43 and Leu-46 substitutions using in vitro mutagenesis of the Saccharomyces cerevisiae gene (MDH1) encoding mitochondrial malate dehydrogenase. The mutant enzymes were expressed in and purified from a yeast strain containing a disruption of the chromosomal MDH1 locus. The enzyme containing the H46L substitution, as compared to the wild type enzyme, exhibits a dramatic shift in the pH profile for catalysis toward an optimum at low pH values. This shift corresponds with an increased stability of the dimeric form of the mutant enzyme, suggesting that His-46 may be the residue responsible for the previously described pH-dependent dissociation of mitochondrial malate dehydrogenase. The D43N substitution results in a mutant enzyme that is essentially inactive in in vitro assays and that tends to aggregate at pH 7.5, the optimal pH for catalysis for the dimeric wild type enzyme.


Asunto(s)
Malato Deshidrogenasa/química , Mitocondrias/enzimología , Mutagénesis , Saccharomyces cerevisiae/enzimología , Acetatos/metabolismo , Ácido Acético , Secuencia de Aminoácidos , Asparagina/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Western Blotting , Cromatografía en Gel , Codón , Histidina/química , Histidina/genética , Concentración de Iones de Hidrógeno , Cinética , Leucina/genética , Sustancias Macromoleculares , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad
13.
Biochemistry ; 27(22): 8393-400, 1988 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-3072021

RESUMEN

The nucleotide sequence was determined for a 1.5-kilobase genomic fragment containing the mitochondrial malate dehydrogenase gene (MDH1) of Saccharomyces cerevisiae. The open-reading frame encodes a precursor form of the mature enzyme containing an amino-terminal extension of 17 amino acid residues. In vitro translation experiments confirm that the initial translation product of MDH1 is larger than the mature polypeptide. Transcription of MDH1 initiates at several sites from 83 to 97 nucleotides 5' of the translational start site. Alignment of the amino acid sequence for the mature yeast enzyme with those for mammalian mitochondrial and for Escherichia coli malate dehydrogenases reveals polypeptides of very similar sizes with identical amino acids at 54% and 48% of the residue positions, respectively. The amino acid sequences of the yeast and mammalian mitochondrial targeting sequences are similar but less related than the mature polypeptides. The yeast MDH1 gene is shown to reside on chromosome XI.


Asunto(s)
Malato Deshidrogenasa/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , ADN de Hongos/genética , Precursores Enzimáticos/genética , Escherichia coli/enzimología , Genes Fúngicos , Mitocondrias/enzimología , Datos de Secuencia Molecular , Ratas , Saccharomyces cerevisiae/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...