Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 10073-10083, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563738

RESUMEN

When water droplets move over a hydrophobic surface, they and the surface become oppositely charged by what is known as slide electrification. This effect can be used to generate electricity, but the physical and especially the chemical processes that cause droplet charging are still poorly understood. The most likely process is that at the base of the droplet, an electric double layer forms, and the interfacial charge remains on the surface behind the three-phase contact line. Here, we investigate the influence of the chemistry of surface (coating) and bulk (substrate) on the slide electrification. We measured the charge of a series of droplets sliding over hydrophobically coated (1-5 nm thickness) glass substrates. Within a series, the charge of the droplet decreases with the increasing droplet number and reaches a constant value after about 50 droplets (saturated state). We show that the charge of the first droplet depends on both coating and substrate chemistry. For a fully fluorinated or fully hydrogenated monolayer on glass, the influence of the substrate on the charge of the first droplet is negligible. In the saturated state, the chemistry of the substrate dominates. Charge separation can be considered as an acid base reaction between the ions of water and the surface. By exploiting the acidity (Pearson hardness) of elements such as aluminum, magnesium, or sodium, a positive saturated charge can be obtained by the counter charge remaining on the surface. With this knowledge, the droplet charge can be manipulated by the chemistry of the substrate.

2.
Soft Matter ; 20(3): 558-565, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126532

RESUMEN

Water drops sliding down inclined hydrophobic, insulating surfaces spontaneously deposit electric charges. However, it is not yet clear how the charges are deposited. The influence of added non-hydrolysable salt, acid, or base in the sliding water drops as well as the surrounding humidity on surface electrification and charge formation is also not yet fully understood. Here, we measure the charging on hydrophobic solid surfaces (coated with PFOTS or PDMS) by sliding drops with varying concentration for different types of solutions. Solutions of NaCl, CaCl2, KNO3, HCl, and NaOH, were studied whose concentrations varied in a range of 0.01 to 100 mM. The charge increased slightly at low concentrations and decreased at higher concentrations. We attribute this decrease to the combined effect of charge screening as the non-hydrolysable salt concentration increases and pH driven charge regulation. The effect of humidity on the measured charge was tested over the range from 10% to 90% of humidity. It was found that the influence of humidity on the charge measurements below 70% humidity is low.

3.
J Phys Chem Lett ; 14(49): 10999-11007, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38039400

RESUMEN

Unraveling the mechanism of water's glass transition and the interconnection between amorphous ices and liquid water plays an important role in our overall understanding of water. X-ray photon correlation spectroscopy (XPCS) experiments were conducted to study the dynamics and the complex interplay between the hypothesized glass transition in high-density amorphous ice (HDA) and the subsequent transition to low-density amorphous ice (LDA). Our XPCS experiments demonstrate that a heterodyne signal appears in the correlation function. Such a signal is known to originate from the interplay of a static component and a dynamic component. Quantitative analysis was performed on this heterodyne signal to extract the intrinsic dynamics of amorphous ice during the HDA-LDA transition. An angular dependence indicates non-isotropic, heterogeneous dynamics in the sample. Using the Stokes-Einstein relation to extract diffusion coefficients, the data are consistent with the scenario of static LDA islands floating within a diffusive matrix of high-density liquid water.

4.
Langmuir ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36634270

RESUMEN

State-of-the-art contact angle measurements usually involve image analysis of sessile drops. The drops are symmetric and images can be taken at high resolution. The analysis of videos of drops sliding down a tilted plate is hampered due to the low resolution of the cutout area where the drop is visible. The challenge is to analyze all video images automatically, while the drops are not symmetric anymore and contact angles change while sliding down the tilted plate. To increase the accuracy of contact angles, we present a 4-segment super-resolution optimized-fitting (4S-SROF) method. We developed a deep learning-based super-resolution model with an upscale ratio of 3; i.e., the trained model is able to enlarge drop images 9 times accurately (PSNR = 36.39). In addition, a systematic experiment using synthetic images was conducted to determine the best parameters for polynomial fitting of contact angles. Our method improved the accuracy by 21% for contact angles lower than 90° and by 33% for contact angles higher than 90°.

5.
Langmuir ; 38(42): 12961-12967, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239606

RESUMEN

The attachment of bio-fluids to surfaces promotes the transmission of diseases. Superhydrophobic textiles may offer significant advantages for reducing the adhesion of bio-fluids. However, they have not yet found widespread use because dried remnants adhere strongly and have poor mechanical or chemical robustness. In addition, with the massive use of polymer textiles, features such as fire and heat resistance can reduce the injuries and losses suffered by people in a fire accident. We developed a superhydrophobic textile covered with a hybrid coating of titanium dioxide and polydimethylsiloxane (TiO2/PDMS). Such a textile exhibits low adhesion to not only bio-fluids but also dry blood. Compared to a hydrophilic textile, the peeling force of the coated textile on dried blood is 20 times lower. The textile's superhydrophobicity survives severe treatment by sandpaper (400 mesh) at high pressure (8 kPa) even if some of its microstructures break. Furthermore, the textile shows excellent heat resistance (350 °C) and flame-retardant properties as compared to those of the untreated textile. These benefits can greatly inhibit the flame spread and reduce severe burns caused by polymer textiles adhering to the skin when melted at high temperatures.


Asunto(s)
Retardadores de Llama , Humanos , Textiles , Interacciones Hidrofóbicas e Hidrofílicas , Dimetilpolisiloxanos , Polímeros
6.
Adv Mater ; 34(34): e2203242, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35772175

RESUMEN

Fast removal of small water drops from surfaces is a challenging issue in heat transfer, water collection, or anti-icing. Poly(dimethylsiloxane) (PDMS) brushes show good prospects to reach this goal because of their low adhesion to liquids. To further reduce adhesion of water drops, here, the surface to the vapor of organic solvents such as toluene or n-hexane is exposed. In the presence of such vapors, water drops slide at lower tilt angle and move faster. This is mainly caused by the physisorption of vapor and swelling of the PDMS brushes, which serves as a lubricating layer. Enhanced by the toluene vapor lubrication, the limit departure volume of water drop on PDMS brushes decreases by one order of magnitude compared to that in air. As a result, the water harvesting efficiency in toluene vapor increases by 65%. Benefits of vapor lubrication are further demonstrated for de-icing: driven by gravity, frozen water drops slide down the vertical PDMS brush surface in the presence of vapor.

7.
Adv Mater ; 34(10): e2107901, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34989448

RESUMEN

Stretchable superamphiphobic surfaces with a high deformation resistance are in demand to achieve liquid-repellent performance in flexible electronics, artificial skin, and textile dressings. However, it is challenging to make mechanically robust superamphiphobic coatings, which maintain their superliquid repellency in a highly stretched state. Here, a stretchable superamphiphobic surface is reported, on which the microstructures can rearrange during stretching to maintain a stable superamphiphobicity even under a high tensile strain. The surface is prepared by spray-coating silicone nanofilaments onto a prestretched substrate (e.g., cis-1,4-polyisoprene) with poly(dimethylsiloxane) (PDMS) layer as a binder. After subsequent fluorination, this surface keeps its superamphiphobicity to both water and n-hexadecane up to the tensile strain of at least 225%. The binding PDMS layer and rearrangeable structures maximize the deformation resistance of the surface during the stretching process. The superamphiphobicity and morphology of the surface are maintained even after 1000 stretch-release cycles. Taking advantage of the mentioned benefits, a liquid manipulation system is designed, which has the potential for fabricating reusable and low-cost platforms for biochemical detection and lab-on-a-chip systems.

8.
J Colloid Interface Sci ; 607(Pt 2): 1661-1670, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34592553

RESUMEN

HYPOTHESIS: Assembly of colloids in drying colloidal suspensions on superhydrophobic surface is influenced by the colloidal interactions, which determine the shape and interior structure of the assembled supraparticle. The introduction of salt (electrolyte) into the assembly system is expected to influence the colloid interactions and packing during the evaporation process. Hence, both the outer shape and internal structure of supraparticles should be controlled by varying salt concentrations. EXPERIMENTS: Suspensions of electrostatically stabilized polystyrene particles with specified salt concentrations were chosen as model systems to conduct the evaporation on a superhydrophobic surface. A systematic study was performed by regulating the concentration and valency of salt. The morphology and interior of supraparticles were carefully characterized with electron scanning microscopy, while the colloidal interaction was established using colloidal probe atomic force microscopy. FINDINGS: Supraparticles displayed a spherical-to-nonspherical shape change due to the addition of salts. The extent of crystallization depended on salt concentration. These changes in shape and structure were correlated with salt-dependent single colloid interaction forces, which were not previously investigated in detail in radially symmetric evaporation geometry. Our findings are crucial for understanding assembly behavior during the drying process and offer guidance for preparing complex supraparticles to meet specific applications requirement.


Asunto(s)
Coloides , Desecación , Cristalización , Microscopía de Fuerza Atómica , Suspensiones
9.
Langmuir ; 37(29): 8677-8686, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34256567

RESUMEN

The control of liquid motion on the micrometer scale is important for many liquid transport and biomedical applications. An efficient way to trigger liquid motion is by introducing surface tension gradients on free liquid interfaces leading to the Marangoni effect. However, a pronounced Marangoni-driven flow generally only occurs at a liquid-air or liquid-liquid interface but not at solid-liquid interfaces. Using superhydrophobic surfaces, the liquid phase stays in the Cassie state (where liquid is only in contact with the tips of the rough surface structure and air is enclosed in the indentations of the roughness) and hence provides the necessary liquid-air interface to trigger evident Marangoni flows. We use light to asymmetrically heat this interface and thereby control liquid motion near superhydrophobic surfaces. By laser scanning confocal microscopy, we determine the velocity distribution evolving through optical excitation. We show that Marangoni flow can be induced optically at structured, air-entrapping superhydrophobic surfaces. Furthermore, by comparison with numerical modeling, we demonstrate that in addition to the Marangoni flow, buoyancy-driven flow occurs. This effect has so far been neglected in similar approaches and models of thermocapillary driven flow at superhydrophobic surfaces. Our work yields insight into the physics of Marangoni flow and can help in designing new contactless, light-driven liquid transport systems, e.g., for liquid pumping or in microfluidic devices.

10.
Adv Mater ; 33(23): e2100237, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33955585

RESUMEN

Coatings with low sliding angles for liquid drops have a broad range of applications. However, it remains a challenge to have a fast, easy, and universal preparation method for coatings that are long-term stable, robust, and environmentally friendly. Here, a one-step grafting-from approach is reported for poly(dimethylsiloxane) (PDMS) brushes on surfaces through spontaneous polymerization of dichlorodimethylsilane fulfilling all these requirements. Drops of a variety of liquids slide off at tilt angles below 5°. This non-stick coating with autophobicity can reduce the waste of water and solvents in cleaning. The strong covalent attachment of the PDMS brush to the substrate makes them mechanically robust and UV-tolerant. Their resistance to high temperatures and to droplet sliding erosion, combined with the low film thickness (≈8 nm) makes them ideal candidates to solve the long-term degradation issues of coatings for heat-transfer surfaces.

11.
Appl Opt ; 59(25): 7496-7503, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902447

RESUMEN

We have developed a combination of light scattering techniques to study and characterize droplets of an ultrasonic spray coater in flight. For this economically relevant spray coater, there is so far no reliable technique to systematically adjust the experimental parameters. We have combined photon correlation spectroscopy and turbidimetry to determine the size and speed of the droplets depending on parameters of the printing process as shroud gas pressure, flow rate, and atomizing power. Our method will allow us to predetermine these parameters to control the properties of the coated films as, e.g., thickness from tens of nanometers to micrometers.

12.
Adv Mater ; 32(11): e1908008, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32009264

RESUMEN

Durable and biocompatible superhydrophobic surfaces are of significant potential use in biomedical applications. Here, a nonfluorinated, elastic, superhydrophobic film that can be used for medical wound dressings to enhance their hemostasis function is introduced. The film is formed by titanium dioxide nanoparticles, which are chemically crosslinked in a poly(dimethylsiloxane) (PDMS) matrix. The PDMS crosslinks result in large strain elasticity of the film, so that it conforms to deformations of the substrate. The photocatalytic activity of the titanium dioxide provides surfaces with both self-cleaning and antibacterial properties. Facile coating of conventional wound dressings is demonstrated with this composite film and then resulting improvement for hemostasis. High gas permeability and water repellency of the film will provide additional benefit for medical applications.


Asunto(s)
Vendajes , Materiales Biocompatibles/química , Hemostasis , Nanopartículas/química , Titanio/química , Antibacterianos/química , Antibacterianos/farmacología , Vendajes/microbiología , Materiales Biocompatibles/farmacología , Catálisis , Elasticidad , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/prevención & control , Hemostasis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Ensayo de Materiales , Propiedades de Superficie , Titanio/farmacología
13.
Langmuir ; 35(43): 14042-14048, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31589055

RESUMEN

Controlling the droplet evaporation on surfaces is desired to get uniform depositions of materials in many applications, for example, in two- and three-dimensional printing and biosensors. To explore a new route to control droplet evaporation on surfaces and produce asymmetric particles, sessile droplets of aqueous dispersions were allowed to evaporate from surfaces coated with oil films. Here, we applied 1-50 µm thick films of different silicone oils. Two contact lines were observed during droplet evaporation: an apparent liquid-liquid-air contact line and liquid-liquid-solid contact line. Because of the oil meniscus covering part of the rim of the drop, evaporation at the periphery is suppressed. Consequently, the droplet evaporates mainly in the central region of the liquid-air interface rather than at the droplet's edge. Colloidal particles migrate with the generated upward flow inside the droplet and are captured by the receding liquid-air interface. A uniform deposition ultimately forms on the substrate. With this straightforward approach, asymmetric supraparticles have been successfully fabricated independent of particle species.

14.
Macromol Rapid Commun ; 40(21): e1900395, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31507007

RESUMEN

The synthesis of ionogels with a responsive, self-replenishing surface for combating biofouling is described. Ionogels are prepared by infiltrating poly(vinylidene fluoride-co-hexafluoropropylene) with binary mixtures of ionic liquids (IL): 1-octadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C18 C1 im][NTf2 ], melting point Tm = 55 °C) and 1-hexyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C6 C1 im][NTf2 ], Tm = -9 °C). The IL mixtures release spontaneously from the gel matrix and eventually crystallize on the surface. This leads to self-replenishment of the surface of ionogels even after mechanical damage. The incorporation of [C6 C1 im][NTf2 ] provides the antimicrobial efficacy of ionogels while the crystals of [C18 C1 im][NTf2 ] serve as a skeleton maintaining [C6 C1 im][NTf2 ] on the surface. By heating, the ionogel surface transforms from solid to liquid-infused state-the removal of biofilms/bacteria developed under a long time of colonization is facilitated. The antimicrobial efficacy is maintained even after several cycles of biofilm formation and detachment. This work provides an opportunity to apply ionogels as functional coatings with renewable antibiofouling properties.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Líquidos Iónicos/farmacología , Polivinilos/farmacología , Líquidos Iónicos/química , Estructura Molecular , Tamaño de la Partícula , Polivinilos/química , Propiedades de Superficie
15.
ACS Appl Mater Interfaces ; 11(30): 27422-27425, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31287281

RESUMEN

Polydimethylsiloxane (PDMS) can be linked to the surface of metal-oxide photocatalysts by immersion and UV illumination. The surfaces become hydrophobic and keep their hydrophobicity even under extended UV exposure. Titanium dioxide (TiO2) is a prominent example of a metal-oxide photocatalyst. Here, we studied the influence of a grafted PDMS layer on the photocatalytic activity and wetting properties of TiO2. By varying the molecular weight of PDMS, we controlled the thickness of the polymer layer from 0.6 to 5.5 nm. We recommend a PDMS molecular weight of 6.0 kDa. It leads to a grafted PDMS layer thickness of 2.2 nm, a receding contact angle of 94°,  a low contact angle hysteresis of 9°, and the layer is still photocatalytically active.

16.
Langmuir ; 34(38): 11292-11304, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30110544

RESUMEN

Many surfaces reversibly change their structure and interfacial energy upon being in contact with a liquid. Such surfaces adapt to a specific liquid. We propose the first order kinetic model to describe dynamic contact angles of such adaptive surfaces. The model is general and does not refer to a particular adaptation process. The aim of the proposed model is to provide a quantitative description of adaptive wetting and to link changes in contact angles to microscopic adaptation processes. By introducing exponentially relaxing interfacial energies and applying Young's equation locally, we predict a change of advancing and receding contact angles depending on the velocity of the contact line. Even for perfectly homogeneous and smooth surfaces, a dynamic contact angle hysteresis is obtained. As possible adaptations, we discuss changes and reconstruction of polymer surfaces or monolayers, diffusion and swelling, adsorption of surfactants, replacement of contaminants, reorientation of liquid molecules, or formation of an electric double layer.

17.
ACS Macro Lett ; 7(4): 425-430, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619337

RESUMEN

We studied experimentally the influence of interfaces on the dynamics in thin polymer films at temperatures far above the glass temperature (Tg + 80 °C). Polyisoprene (PI) was employed as a model system. We examined glass substrate supported films with thicknesses (d) spanning the range from 10 µm to 10 nm that correspond to d/Rg from 400 to 1, where Rg is the polymer radius of gyration. We employed fluorescence correlation spectroscopy (FCS) to monitor the translational diffusion of small fluorescent tracer molecules, dispersed at nanomolar concentrations in the PI matrix. In thick films, a single diffusion process correlated to the bulk segmental dynamics of the matrix polymer was present. However, when the film thickness was smaller than the normal dimension of the FCS observation volume, a second, faster diffusion process appeared, reflecting enhanced segmental dynamics near the free surface. Our results provide direct experimental evidence for the existence of a layer with enhanced mobility near the free surface of supported PI films at temperatures as high as 80 °C above the bulk Tg.

18.
Adv Mater ; 29(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27918115

RESUMEN

An amphiphilic Ru-containing block copolymer is used as a photoactivated polymetallodrug for anticancer phototherapy. The block copolymer self-assembles into nanoparticles, which can accumulate at tumor sites in a mouse model. Red light irradiation of the block copolymer nanoparticles releases anticancer Ru complexes and generates cytotoxic 1 O2 , both of which can inhibit tumor growth.


Asunto(s)
Rutenio/química , Animales , Luz , Ratones , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fototerapia
19.
Langmuir ; 33(1): 107-116, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28001428

RESUMEN

A water drop moving on a superhydrophobic surface or an oil drop moving on a superoleophobic surface dissipates energy by pinning/depinning at nano- and microprotrusions. Here, we calculate the work required to form, extend, and rupture capillary bridges between the protrusions and the drop. The energy dissipated at one protrusion WS is derived from the observable apparent receding contact angle Θrapp and the density of protrusions n by Ws = γ(cos Θrapp + 1)/n, where γ is the surface tension of the liquid. To derive an expression for Ws that links the microscopic structure of the surface to apparent contact angles, two models are considered: A superhydrophobic array of cylindrical micropillars and a superoleophobic array of stacks of microspheres. For a radius of a protrusion R and a receding materials contact angle Θr, we calculate the energy dissipated per protrusion as Ws = πγR2[A - ln(R/κ)]f(Θr). Here, A = 0.60 for cylindrical micropillars and 2.9 for stacks of spheres. κ is the capillary length. f(Θr) is a function which depends on Θr and the specific geometry, f ranges from ≈0.25 to 0.96. Combining both equations above, we can correlate the macroscopically observed apparent receding contact angle with the microscopic structure of the surface and its material properties.

20.
Adv Healthc Mater ; 5(4): 467-73, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26680371

RESUMEN

The use of self-assembled nanostructures consisting of red-light-responsive Ru(II)-containing block copolymers (BCPs) for anticancer phototherapy is demonstrated. Three Ru-containing BCPs with different molecular weights are synthesized. Each BCP contains a hydrophilic poly(ethylene glycol) block and an Ru-containing block. In the Ru-containing block, more than half of the side chains are coordinated with [Ru(2,2':6',2''-terpyridine)(2,2'-biquinoline)](2+) , resulting in more than 40 wt% Ru complex in the BCPs. The Ru complex acts as both a red-light-cleavable moiety and a photoactivated prodrug. Depending on their molecular weights, the BCPs assemble into micelles, vesicles, and large compound micelles. All of the BCP assemblies are taken up by cancer cells. Red-light irradiation releases the Ru complex and generates singlet oxygen ((1) O2 ) in cancer cells. The released Ru complex and (1) O2 inhibit the growth of cancer cells. Among the three BCP assemblies, the BCP micelle exhibits the most efficient cellular uptake and best anticancer performance.


Asunto(s)
Nanoestructuras/química , Neoplasias/terapia , Fototerapia/métodos , Polímeros/química , Rutenio/química , Supervivencia Celular , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Micelas , Peso Molecular , Polietilenglicoles/química , Profármacos/química , Profármacos/farmacología , Rutenio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...